CST112--Functions Page 1

1 Processing: Functions
CST112

2 Structuring Programs (Modularity)
» Programmers often divide large applications into several modules within the program
* This is necessary due to the size and complexity of professional programs
* Hierarchies of structure allow the design to begin at the most general level ...
» And work to the more specific

3 To Find an Office in a Building
+ Acity
— has many districts or suburbs
« each of which has many streets
—each of which has many buildings
»each of which has many offices

4 Top-Down Program Structure
* The problem
— has some major tasks
« each of which has many subtasks
—each of which has many subtasks
.. and so on down as needed

6 Structure Using Functions (Page 1)
+ Complete applications in programming consist of a hierarchical collection of functions
* Working together they perform the entire programming task

» Most complex tasks can be subdivided into procedures in this way (“divide and
conquer”)

7 Structure Using Functions (Page 2)
 Functions are written by a programmer to define specific tasks within the larger task...
— Each task should be clearly identifiable
+ Statements defining the functions are written once in the application and may be called
from more than one location in the program (reusability)
+ Statements and variables are hidden from other functions in the program (information
hiding)
8 Advantages of Using Functions
* Pre-written built-in functions (part of the Processing language/library) simplify program
development
— E.g. line(), rect(), ellipse(), etc
* Each small piece can be written and tested separately
* Smaller functions usually are easier to understand

* In large professional systems individual programmers and programmer teams can build
and share functions

CST112--Functions Page 2

10

11

12

13

The Function Call (Page 1)
* The function is invoked by a function call
— The syntax specifies the function’s name
— Transfers control to the location of the function in the program and executes it

— Optionally provides the information/input (called the arguments) that the function
needs for execution

The Function Call (Page 2)
* Format:
functionName([argumentT, argument2, ...1);
— The function call will transfer control of the execution of the program to the location
of the functionName
» Examples:
stickMan();
circle(x, y, radius);

The Function Definition (Page 1)

+ A program function is defined by a header (which names the function—also is called its
signature) and the body enclosed in {braces}
— The format is similar to setup() or draw()

The Function Definition (Page 2)

*+ Simple format:
void functionName()

{

variableDeclarations/statements ...

}

» Complex format:
type/void functionName([type parameter1, type parameter2, ... 1)
{

variableDeclarations/statements ...

}

The Function Definition (Page 3)
+ Examples:

void setup()

{

}
void stickMan()

{

CST112--Functions

14

30

31

32

33

34

Function Control
1. The function call transfers control to the named sub function
2. The body of that function is executed entirely

3. At the conclusion of execution of the sub function, control returns to point in the initial
function at which the sub function was called

Passing Arguments
* In many function calls, there may be a value or values inside the parentheses
(arguments) that are passed to the called function (data “sharing”)
— True for “built-in” Processing function calls as well as those defined by programmers
* Format:
functionName(parameter1[, parameter2, ...]);
» Examples:
rect(x, y, w, l);
circle(x, y, diameter);

The Parameter List (Page 1)
* The parameter list is a comma-separated list of variable declarations inside the function
header (signature)
— The textbook calls this the "argument list”
— However for clarity and consistency with other languages, we will use the term
parameter list
* Variables receive the values passed from the parameters in the function call

The Parameter List (Page 2)
* Format:
void/type functionName([type parameter], type parameter2, ...])

— Each parameter in the list is a declared variable, declared separately with its own type
(even if two or more parameters are the same type)

» Examples:
void circle(int x, int y, int diameter)
void stickMan(int xCoord, int yCoord)

The Parameter List (Page 3)
e Parameters are local variables:

— A means for communicating information between the function call and the function
itself

— When the function is called, the argument values are passed and assigned to the
parameter variables in the function header

The Parameter List (Page 4)

» The number of arguments in the function call must be the same as the number of
parameter variables in the called function header

* The variable type of each parameter in the function header must match that of the

Page 3

CST112--Functions Page 4

argument value passed to it (and in the same order)

36 Function Call and Definition Examples
* Function calls:
circle(75, 125, 50);
circle(x, y, r);
circle(mouseX, mouseY, diameter);
* Function header (signature) and body
void circle(int x, int y, int diameter)
{
ellipse(x, y, diameter, diameter);

}

50 Passing Arguments “ByValue”
* Passing an argument by value means that a copy of the argument is stored as private in
the called function at a separate RAM address ...
— Changing the value of the variable in the called function does not change the original
value
* The opposite of passing by value is passing by reference which means that the address
of the values is passed to the called function ...
— Changing the value of the variable in the called function will change the original
value

51 Return Values (Page 1)
* Programmer-defined functions:
1. May have arguments passed to them (the input)
2. Process that data (the code)
3. May have return values (the output from the function that is sent back to the
location of the function call)

52 Return Values (Page 2)

» Many functions “calculate” a return value (result) that is passed back to the calling
function

» Statements using the keyword return are used to return a value from function to the
call location

* Any number of return statements may be coded within the function, any of which:
1. Terminate execution of function at that point
2. Return control to the location at which it was called and passes the result back to

the call

53 Return Values (Page 3)
» Format for functions that return a result:
return expression,;
— Returns expression value to calling function
» Examples:

CST112--Functions Page 5

return 10;

return x;

return mouseX * mouseY;
return random(255);

54 Return Value Example
* Function call:
int r = rgbRandom();
— Execution of all functions take precedence over the assignment operator
— A function that returns a value is an expression that "behaves” like a calculation
(formula)
* Function definition:
int rgbRandom()
{
return (int) random(255);

}

56 Using the Return Value
* The function call should use the returned value as part of another statement ...
— Assignment statement, output statement, or some other data related operation
» Examples:

r = rgbRandom();
printin(rgbRandom());

if (rgbRandom() < 127) ...
fill(rgbRandom(), rgbRandom(), rgbRandom());

57 Invalid Function Calls
 Therefore functions that return a value should not stand alone
» The rgbRandom() function does return a value so the following is invalid:
rgbRandom();
* The circle(int, int, int) function does not return a value so the following is valid:
circle(mouseX, mouseY, rad);

60 Function Types
 Functions that return a value have a type
— A function’s type must be the same as the type of the value that is returned
* Format:
type/void functionName([parameterList])
» Example:
int rgbRandom()
« If a value is not returned, the return type is void
void circle(int xCoord, int yCoord, int radius)

61 The key System Variable

CST112--Functions

62

67

69

75

* A Processing system variable that stores the last ASCII character that was used on the
keyboard (either keyed or released)

» Special system constants that can be tested for include BACKSPACE, TAB, ENTER, ESC,
etc.

+ Examples:
if (key =="A")
— Differentiates between upper and lower cases
if (key == ENTER) // The Enter key

The keyCode System Variable
* A Processing system variable that stores the last non-ASCll character that was pressed
on the keyboard (either keyed or released)

* The special non-ASCIl system constants that can be tested for include UP, DOWN, LEFT,
RIGHT, SHIFT, ALT, CONTROL, etc.

* Example:
if (keyCode == UP) // The Up arrow key

The sq and sqrt Functions
* These are two Math functions:
— The sq() function returns the square of a value, (the product of multiplying it by
itself), e.g.
square = sq(9); // square will be 81
— The sqgrt() function returns the square root of a value, e.g.
root = sqrt(9); // root will be 3

Using the Return Value
+ A function call that returns a value can be used to represent values in a larger
expression (not just in assignment statements)
» Examples:
printin(rgbRandom());
circle(x, y, radius(x, y) * 2);
fill rgbRandom(), rgbRandom(), rgbRandom());

Final Review of Function Calls
* So remember that there are three distinct elements involved in calling functions:

1) The function call transfers control to the called function (and automatically transfers
back to the call location when done executing)

2) One or more argument values may be passed to parameter variables that are
defined in the called function’s header

3) Avalue (the result of function’s processing) may be returned after its execution

Page 6

