
CST112—Looping Statements Page 1

Processing: Looping Statements

CST112

Algorithms

 Procedure for solving problem:

1. Actions to be executed

2. Order in which actions are executed

 The order of the elements of an algorithm are very important …

 Even if the order appears insignificant, errors can have far-reaching results

Research of Bohm and Jacopini

 They proposed that all programs can be written in terms of three control structures:

 The type of instructions that specify the order in which statements in a program is
executed

1. Sequence structure—step by step in order

2. Selection (decision or conditional) structure

3. Repetition (iteration or loop) structure—repeating blocks of statements

Iteration (Loop) Statements

 Provides repeated execution of a block of statements

 The loop continues:

1. A specified number of times (counter-controlled) or …

2. While a condition is met (sentinel-controlled)

 Also called repetition or do while structure

 Meaning do the loop while condition is True

Iteration (Loop) Pattern

 One or more statements in a block are executed repeatedly

 Loop continues while certain condition is true

while (Another rectangle?)

{

Set random fill color;

Set size 10 pixels smaller;

Draw rectangle;

}

The for Loop (Page 1)

 Implements a loop by counting a specific number of iterations (repetitions)

Counter-controlled looping

 Appropriate when exact number of loop repetitions is known

 Format:

for (initialize; booleanExpression; increment)

{

Statement(s) to be repeated;

}

The for Loop (Page 2)

 Example (three expressions in the parentheses):

for (ctr = 0; ctr <= 9; ctr = ctr + 1)

 The initialize component (ctr = 0)

Value assigned to a counter variable when the loop is first encountered in the
program

 The booleanExpression component (ctr <= 9)

Relation condition which is tested to determine if the loop should be entered again

 The increment component (ctr = ctr + 1)

Indicates by what value the counter changes at the beginning of each subsequent
loop

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Strings (Page 1)

 A string is a sequence of characters

 Strings are always defined inside double quotes ("abc")

Alternately characters (type char) are always defined inside single quotes ('a') and
may only contain a single character

Strings (Page 2)

 The class String includes methods for:

Examining individual characters within strings

Comparing strings

Searching strings

Extracting parts of strings

Converting an entire string to uppercase or lowercase

Etc.

The text() Function (Page 1)

 “Draws” data to the screen

The data may be text, a char, an int or a float

 Displays the information specified in the first parameter on the screen in the position
specified by the additional two parameters

 By default the text displays starting from and then to the right of the positions
coordinates

 The fill() function controls the color of the text (default always is white)

The text() Function (Page 2)

 Format:

text(theData, xCoordinate, yCoordinate);

 Examples:

text("Hello", mouseX, mouseY);

text(ctr, 100, 100);

Text.pde

Loops1a.pde (Page 1)

Loops1a.pde (Page 2)

Relationship of draw() and mousePressed() functions

 A draw() function is needed so the output from the mousePressed() function will be
visible

 This is true even if draw() is empty; otherwise there will be no output to the Processing
output window

Assignment Operators

 Also known as op equals operators

 Assigns an updated value to a variable

Operator Example Explanation

+= ctr += 1; ctr = ctr + 1;

-= ctr -= 17; ctr = ctr - 17;

*= ctr *= 8; ctr = ctr * 8;

/= ctr /= 5; ctr = ctr / 5;

Loops1b.pde (Page 1)

Loops1b.pde (Page 2)

Unary Operators (Page 1)

 Unary operators update variables values by adding (increment operator) or subtracting
(decrement operator) value of 1 to (or from)

Operator Example Explanation

++ ctr++; ctr = ctr + 1; (post)

++ ++ctr; ctr = ctr + 1; (pre)

-- ctr--; ctr = ctr - 1; (post)

-- --ctr; ctr = ctr - 1; (pre)

Unary Operators (Page 2)

 If operator is a prefix, the value is returned after it is increased or decreased:

When the variable ctr = 5:

newVar = ++ctr; // newVar will be 6

 If operator is a suffix, the value is returned before:

When the variable ctr = 5:

newVar = ctr++; // newVar will be 5

 Final value of ctr in both cases will be 6

Loops1c.pde (Page 1)

Loops1c.pde (Page 2)

Loops1d.pde (Page 1)

Loops1d.pde (Page 2)

Variable Scope (Page 1)

 Variables are recognized in the block in which they are declared …

Including loop and conditional blocks

 And all subordinate blocks

 If a variable is declared before the first function (i.e. before the setup() function) or
outside of any function, that variable has global scope

It is recognized inside every function in application

Variable Scope (Page 2)

 In the following example, the variable ctr only is accessible inside the mousePressed()
function

It would not be accessible in any other function:

void mousePressed()

{

int ctr;

for (ctr = 0; ctr < 10; ctr++)

{

println(ctr);

}

}

Loops1e.pde (Page 1)

Loops1e.pde (Page 2)

Variable Scope (Page 3)

 In the following example, the variable ctr only is accessible inside the for block:

for (int ctr = 0; ctr < 10; ctr++)

{

println(ctr);

}

println(ctr);

The last statement would result in a compile error

Loops1f.pde (Page 1)

Loops1f.pde (Page 2)

Loops2.pde (Page 1)

Loops2.pde (Page 2)

MiniQuiz No. 1—
Filename: “Loops3.pde”

 Create an output window 400 by 400 pixels

 In the mousePressed() function draw 1000 circles with diameter of 20 pixels at random
locations

 The RGB colors for each individual circle are random values between 0 and 255

 The transparency for each individual circle is a random value between 100 and 255

 Erase the output window at each mousePressed() click to draw 1000 new circles

LoopsMiniQuiz1.pde (Page 1)

LoopsMiniQuiz1.pde (Page 2)

The while Loop (Page 1)

 Continues to repeat a loop as long as a controlling condition is true (pre-test)

 The variable controlling the condition is updated by logic within the loop

Exact number of loops is usually unknown

 Format:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

The while Loop (Page 2)

 Example:

int ctr = 600;

while (ctr > 0)

{

rect(width / 2, width / 2, ctr, ctr);

ctr -= 10;

}

The while Loop

Remember the if Format …

 Format of the if statement:

if (booleanExpression)

{

Statement(s) to be executed if the booleanExpression is true;

}

 Format of the while statement:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

Comparing for and while

 The for example:

for (ctr = 1; ctr <= 10; ctr++)

{

println(ctr);

}

 The while example :

ctr = 1; // Initialize

while (ctr <= 10) // Boolean test

{

println(ctr);

ctr++; // Increment

}

Loops4.pde (Page 1)

Loops4.pde (Page 2)

Loops5.pde (Page 1)

Loops4.pde (Page 2)

The do while Loop (Page 1)

 Continues to repeat a loop as long as a controlling condition is true

 Performs the test at the conclusion of the execution of each loop (post-test)

 Format:

do

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

while (booleanExpression);

The do while Loop (Page 2)

 Example:

do

{

rect(mySize / 2, mySize / 2, ctr, ctr);

ctr -= 10;

}

while (ctr > 0);

 A do while loop always executes at least one time

Comparing while and do while

 The while Format:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

 The do while Format:

do

{

Statement(s) to be repeated as long as the booleanExpression is true;

} while (booleanExpression);

The do while Loop

The while Loop

Loops6.pde (Page 1)

Loops6.pde (Page 2)

Looping Inside draw() Function

 Effectively any loop structure placed inside the draw() function is a nested loop (an
inner loop inside an outer loop)

 Remember that Processing only updates the output display at the conclusion of each
draw() function

Therefore changes that occur during draw() do not render until each of its iterations
is done executing

Loops7.pde (Page 1)

Loops7.pde (Page 2)

Loops7.pde (Page 3)

Loops7.pde (Page 4)

MiniQuiz No. 2—
Filename: “Loops8.pde”

 Create an output window 200 by 200 pixels

 In draw() use a for loop to draw five circles one on top of the next with diameters 50,
40, 30, 20 and 10 pixels at the x location (y is midpoint of output window)

 In the loop vary (calculate) amount of green fill color from full to less for each circle;
red and blue are zero

 Move the x location across the screen; when left or right margins are encountered,
change direction

 Use a variable to control the output window size so that functioning is the same when
the size changes

Loops8.pde (Page 1)

Loops8.pde (Page 2)

Loops8.pde (Page 3)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

CST112—Looping Statements Page 2

Processing: Looping Statements

CST112

Algorithms

 Procedure for solving problem:

1. Actions to be executed

2. Order in which actions are executed

 The order of the elements of an algorithm are very important …

 Even if the order appears insignificant, errors can have far-reaching results

Research of Bohm and Jacopini

 They proposed that all programs can be written in terms of three control structures:

 The type of instructions that specify the order in which statements in a program is
executed

1. Sequence structure—step by step in order

2. Selection (decision or conditional) structure

3. Repetition (iteration or loop) structure—repeating blocks of statements

Iteration (Loop) Statements

 Provides repeated execution of a block of statements

 The loop continues:

1. A specified number of times (counter-controlled) or …

2. While a condition is met (sentinel-controlled)

 Also called repetition or do while structure

 Meaning do the loop while condition is True

Iteration (Loop) Pattern

 One or more statements in a block are executed repeatedly

 Loop continues while certain condition is true

while (Another rectangle?)

{

Set random fill color;

Set size 10 pixels smaller;

Draw rectangle;

}

The for Loop (Page 1)

 Implements a loop by counting a specific number of iterations (repetitions)

Counter-controlled looping

 Appropriate when exact number of loop repetitions is known

 Format:

for (initialize; booleanExpression; increment)

{

Statement(s) to be repeated;

}

The for Loop (Page 2)

 Example (three expressions in the parentheses):

for (ctr = 0; ctr <= 9; ctr = ctr + 1)

 The initialize component (ctr = 0)

Value assigned to a counter variable when the loop is first encountered in the
program

 The booleanExpression component (ctr <= 9)

Relation condition which is tested to determine if the loop should be entered again

 The increment component (ctr = ctr + 1)

Indicates by what value the counter changes at the beginning of each subsequent
loop

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Strings (Page 1)

 A string is a sequence of characters

 Strings are always defined inside double quotes ("abc")

Alternately characters (type char) are always defined inside single quotes ('a') and
may only contain a single character

Strings (Page 2)

 The class String includes methods for:

Examining individual characters within strings

Comparing strings

Searching strings

Extracting parts of strings

Converting an entire string to uppercase or lowercase

Etc.

The text() Function (Page 1)

 “Draws” data to the screen

The data may be text, a char, an int or a float

 Displays the information specified in the first parameter on the screen in the position
specified by the additional two parameters

 By default the text displays starting from and then to the right of the positions
coordinates

 The fill() function controls the color of the text (default always is white)

The text() Function (Page 2)

 Format:

text(theData, xCoordinate, yCoordinate);

 Examples:

text("Hello", mouseX, mouseY);

text(ctr, 100, 100);

Text.pde

Loops1a.pde (Page 1)

Loops1a.pde (Page 2)

Relationship of draw() and mousePressed() functions

 A draw() function is needed so the output from the mousePressed() function will be
visible

 This is true even if draw() is empty; otherwise there will be no output to the Processing
output window

Assignment Operators

 Also known as op equals operators

 Assigns an updated value to a variable

Operator Example Explanation

+= ctr += 1; ctr = ctr + 1;

-= ctr -= 17; ctr = ctr - 17;

*= ctr *= 8; ctr = ctr * 8;

/= ctr /= 5; ctr = ctr / 5;

Loops1b.pde (Page 1)

Loops1b.pde (Page 2)

Unary Operators (Page 1)

 Unary operators update variables values by adding (increment operator) or subtracting
(decrement operator) value of 1 to (or from)

Operator Example Explanation

++ ctr++; ctr = ctr + 1; (post)

++ ++ctr; ctr = ctr + 1; (pre)

-- ctr--; ctr = ctr - 1; (post)

-- --ctr; ctr = ctr - 1; (pre)

Unary Operators (Page 2)

 If operator is a prefix, the value is returned after it is increased or decreased:

When the variable ctr = 5:

newVar = ++ctr; // newVar will be 6

 If operator is a suffix, the value is returned before:

When the variable ctr = 5:

newVar = ctr++; // newVar will be 5

 Final value of ctr in both cases will be 6

Loops1c.pde (Page 1)

Loops1c.pde (Page 2)

Loops1d.pde (Page 1)

Loops1d.pde (Page 2)

Variable Scope (Page 1)

 Variables are recognized in the block in which they are declared …

Including loop and conditional blocks

 And all subordinate blocks

 If a variable is declared before the first function (i.e. before the setup() function) or
outside of any function, that variable has global scope

It is recognized inside every function in application

Variable Scope (Page 2)

 In the following example, the variable ctr only is accessible inside the mousePressed()
function

It would not be accessible in any other function:

void mousePressed()

{

int ctr;

for (ctr = 0; ctr < 10; ctr++)

{

println(ctr);

}

}

Loops1e.pde (Page 1)

Loops1e.pde (Page 2)

Variable Scope (Page 3)

 In the following example, the variable ctr only is accessible inside the for block:

for (int ctr = 0; ctr < 10; ctr++)

{

println(ctr);

}

println(ctr);

The last statement would result in a compile error

Loops1f.pde (Page 1)

Loops1f.pde (Page 2)

Loops2.pde (Page 1)

Loops2.pde (Page 2)

MiniQuiz No. 1—
Filename: “Loops3.pde”

 Create an output window 400 by 400 pixels

 In the mousePressed() function draw 1000 circles with diameter of 20 pixels at random
locations

 The RGB colors for each individual circle are random values between 0 and 255

 The transparency for each individual circle is a random value between 100 and 255

 Erase the output window at each mousePressed() click to draw 1000 new circles

LoopsMiniQuiz1.pde (Page 1)

LoopsMiniQuiz1.pde (Page 2)

The while Loop (Page 1)

 Continues to repeat a loop as long as a controlling condition is true (pre-test)

 The variable controlling the condition is updated by logic within the loop

Exact number of loops is usually unknown

 Format:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

The while Loop (Page 2)

 Example:

int ctr = 600;

while (ctr > 0)

{

rect(width / 2, width / 2, ctr, ctr);

ctr -= 10;

}

The while Loop

Remember the if Format …

 Format of the if statement:

if (booleanExpression)

{

Statement(s) to be executed if the booleanExpression is true;

}

 Format of the while statement:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

Comparing for and while

 The for example:

for (ctr = 1; ctr <= 10; ctr++)

{

println(ctr);

}

 The while example :

ctr = 1; // Initialize

while (ctr <= 10) // Boolean test

{

println(ctr);

ctr++; // Increment

}

Loops4.pde (Page 1)

Loops4.pde (Page 2)

Loops5.pde (Page 1)

Loops4.pde (Page 2)

The do while Loop (Page 1)

 Continues to repeat a loop as long as a controlling condition is true

 Performs the test at the conclusion of the execution of each loop (post-test)

 Format:

do

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

while (booleanExpression);

The do while Loop (Page 2)

 Example:

do

{

rect(mySize / 2, mySize / 2, ctr, ctr);

ctr -= 10;

}

while (ctr > 0);

 A do while loop always executes at least one time

Comparing while and do while

 The while Format:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

 The do while Format:

do

{

Statement(s) to be repeated as long as the booleanExpression is true;

} while (booleanExpression);

The do while Loop

The while Loop

Loops6.pde (Page 1)

Loops6.pde (Page 2)

Looping Inside draw() Function

 Effectively any loop structure placed inside the draw() function is a nested loop (an
inner loop inside an outer loop)

 Remember that Processing only updates the output display at the conclusion of each
draw() function

Therefore changes that occur during draw() do not render until each of its iterations
is done executing

Loops7.pde (Page 1)

Loops7.pde (Page 2)

Loops7.pde (Page 3)

Loops7.pde (Page 4)

MiniQuiz No. 2—
Filename: “Loops8.pde”

 Create an output window 200 by 200 pixels

 In draw() use a for loop to draw five circles one on top of the next with diameters 50,
40, 30, 20 and 10 pixels at the x location (y is midpoint of output window)

 In the loop vary (calculate) amount of green fill color from full to less for each circle;
red and blue are zero

 Move the x location across the screen; when left or right margins are encountered,
change direction

 Use a variable to control the output window size so that functioning is the same when
the size changes

Loops8.pde (Page 1)

Loops8.pde (Page 2)

Loops8.pde (Page 3)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

Processing: Looping Statements

CST112

Algorithms

 Procedure for solving problem:

1. Actions to be executed

2. Order in which actions are executed

 The order of the elements of an algorithm are very important …

 Even if the order appears insignificant, errors can have far-reaching results

Research of Bohm and Jacopini

 They proposed that all programs can be written in terms of three control structures:

 The type of instructions that specify the order in which statements in a program is
executed

1. Sequence structure—step by step in order

2. Selection (decision or conditional) structure

3. Repetition (iteration or loop) structure—repeating blocks of statements

Iteration (Loop) Statements

 Provides repeated execution of a block of statements

 The loop continues:

1. A specified number of times (counter-controlled) or …

2. While a condition is met (sentinel-controlled)

 Also called repetition or do while structure

 Meaning do the loop while condition is True

Iteration (Loop) Pattern

 One or more statements in a block are executed repeatedly

 Loop continues while certain condition is true

while (Another rectangle?)

{

Set random fill color;

Set size 10 pixels smaller;

Draw rectangle;

}

The for Loop (Page 1)

 Implements a loop by counting a specific number of iterations (repetitions)

Counter-controlled looping

 Appropriate when exact number of loop repetitions is known

 Format:

for (initialize; booleanExpression; increment)

{

Statement(s) to be repeated;

}

The for Loop (Page 2)

 Example (three expressions in the parentheses):

for (ctr = 0; ctr <= 9; ctr = ctr + 1)

 The initialize component (ctr = 0)

Value assigned to a counter variable when the loop is first encountered in the
program

 The booleanExpression component (ctr <= 9)

Relation condition which is tested to determine if the loop should be entered again

 The increment component (ctr = ctr + 1)

Indicates by what value the counter changes at the beginning of each subsequent
loop

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Strings (Page 1)

 A string is a sequence of characters

 Strings are always defined inside double quotes ("abc")

Alternately characters (type char) are always defined inside single quotes ('a') and
may only contain a single character

Strings (Page 2)

 The class String includes methods for:

Examining individual characters within strings

Comparing strings

Searching strings

Extracting parts of strings

Converting an entire string to uppercase or lowercase

Etc.

The text() Function (Page 1)

 “Draws” data to the screen

The data may be text, a char, an int or a float

 Displays the information specified in the first parameter on the screen in the position
specified by the additional two parameters

 By default the text displays starting from and then to the right of the positions
coordinates

 The fill() function controls the color of the text (default always is white)

The text() Function (Page 2)

 Format:

text(theData, xCoordinate, yCoordinate);

 Examples:

text("Hello", mouseX, mouseY);

text(ctr, 100, 100);

Text.pde

Loops1a.pde (Page 1)

Loops1a.pde (Page 2)

Relationship of draw() and mousePressed() functions

 A draw() function is needed so the output from the mousePressed() function will be
visible

 This is true even if draw() is empty; otherwise there will be no output to the Processing
output window

Assignment Operators

 Also known as op equals operators

 Assigns an updated value to a variable

Operator Example Explanation

+= ctr += 1; ctr = ctr + 1;

-= ctr -= 17; ctr = ctr - 17;

*= ctr *= 8; ctr = ctr * 8;

/= ctr /= 5; ctr = ctr / 5;

Loops1b.pde (Page 1)

Loops1b.pde (Page 2)

Unary Operators (Page 1)

 Unary operators update variables values by adding (increment operator) or subtracting
(decrement operator) value of 1 to (or from)

Operator Example Explanation

++ ctr++; ctr = ctr + 1; (post)

++ ++ctr; ctr = ctr + 1; (pre)

-- ctr--; ctr = ctr - 1; (post)

-- --ctr; ctr = ctr - 1; (pre)

Unary Operators (Page 2)

 If operator is a prefix, the value is returned after it is increased or decreased:

When the variable ctr = 5:

newVar = ++ctr; // newVar will be 6

 If operator is a suffix, the value is returned before:

When the variable ctr = 5:

newVar = ctr++; // newVar will be 5

 Final value of ctr in both cases will be 6

Loops1c.pde (Page 1)

Loops1c.pde (Page 2)

Loops1d.pde (Page 1)

Loops1d.pde (Page 2)

Variable Scope (Page 1)

 Variables are recognized in the block in which they are declared …

Including loop and conditional blocks

 And all subordinate blocks

 If a variable is declared before the first function (i.e. before the setup() function) or
outside of any function, that variable has global scope

It is recognized inside every function in application

Variable Scope (Page 2)

 In the following example, the variable ctr only is accessible inside the mousePressed()
function

It would not be accessible in any other function:

void mousePressed()

{

int ctr;

for (ctr = 0; ctr < 10; ctr++)

{

println(ctr);

}

}

Loops1e.pde (Page 1)

Loops1e.pde (Page 2)

Variable Scope (Page 3)

 In the following example, the variable ctr only is accessible inside the for block:

for (int ctr = 0; ctr < 10; ctr++)

{

println(ctr);

}

println(ctr);

The last statement would result in a compile error

Loops1f.pde (Page 1)

Loops1f.pde (Page 2)

Loops2.pde (Page 1)

Loops2.pde (Page 2)

MiniQuiz No. 1—
Filename: “Loops3.pde”

 Create an output window 400 by 400 pixels

 In the mousePressed() function draw 1000 circles with diameter of 20 pixels at random
locations

 The RGB colors for each individual circle are random values between 0 and 255

 The transparency for each individual circle is a random value between 100 and 255

 Erase the output window at each mousePressed() click to draw 1000 new circles

LoopsMiniQuiz1.pde (Page 1)

LoopsMiniQuiz1.pde (Page 2)

The while Loop (Page 1)

 Continues to repeat a loop as long as a controlling condition is true (pre-test)

 The variable controlling the condition is updated by logic within the loop

Exact number of loops is usually unknown

 Format:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

The while Loop (Page 2)

 Example:

int ctr = 600;

while (ctr > 0)

{

rect(width / 2, width / 2, ctr, ctr);

ctr -= 10;

}

The while Loop

Remember the if Format …

 Format of the if statement:

if (booleanExpression)

{

Statement(s) to be executed if the booleanExpression is true;

}

 Format of the while statement:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

Comparing for and while

 The for example:

for (ctr = 1; ctr <= 10; ctr++)

{

println(ctr);

}

 The while example :

ctr = 1; // Initialize

while (ctr <= 10) // Boolean test

{

println(ctr);

ctr++; // Increment

}

Loops4.pde (Page 1)

Loops4.pde (Page 2)

Loops5.pde (Page 1)

Loops4.pde (Page 2)

The do while Loop (Page 1)

 Continues to repeat a loop as long as a controlling condition is true

 Performs the test at the conclusion of the execution of each loop (post-test)

 Format:

do

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

while (booleanExpression);

The do while Loop (Page 2)

 Example:

do

{

rect(mySize / 2, mySize / 2, ctr, ctr);

ctr -= 10;

}

while (ctr > 0);

 A do while loop always executes at least one time

Comparing while and do while

 The while Format:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

 The do while Format:

do

{

Statement(s) to be repeated as long as the booleanExpression is true;

} while (booleanExpression);

The do while Loop

The while Loop

Loops6.pde (Page 1)

Loops6.pde (Page 2)

Looping Inside draw() Function

 Effectively any loop structure placed inside the draw() function is a nested loop (an
inner loop inside an outer loop)

 Remember that Processing only updates the output display at the conclusion of each
draw() function

Therefore changes that occur during draw() do not render until each of its iterations
is done executing

Loops7.pde (Page 1)

Loops7.pde (Page 2)

Loops7.pde (Page 3)

Loops7.pde (Page 4)

MiniQuiz No. 2—
Filename: “Loops8.pde”

 Create an output window 200 by 200 pixels

 In draw() use a for loop to draw five circles one on top of the next with diameters 50,
40, 30, 20 and 10 pixels at the x location (y is midpoint of output window)

 In the loop vary (calculate) amount of green fill color from full to less for each circle;
red and blue are zero

 Move the x location across the screen; when left or right margins are encountered,
change direction

 Use a variable to control the output window size so that functioning is the same when
the size changes

Loops8.pde (Page 1)

Loops8.pde (Page 2)

Loops8.pde (Page 3)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

Processing: Looping Statements

CST112

Algorithms

 Procedure for solving problem:

1. Actions to be executed

2. Order in which actions are executed

 The order of the elements of an algorithm are very important …

 Even if the order appears insignificant, errors can have far-reaching results

Research of Bohm and Jacopini

 They proposed that all programs can be written in terms of three control structures:

 The type of instructions that specify the order in which statements in a program is
executed

1. Sequence structure—step by step in order

2. Selection (decision or conditional) structure

3. Repetition (iteration or loop) structure—repeating blocks of statements

Iteration (Loop) Statements

 Provides repeated execution of a block of statements

 The loop continues:

1. A specified number of times (counter-controlled) or …

2. While a condition is met (sentinel-controlled)

 Also called repetition or do while structure

 Meaning do the loop while condition is True

Iteration (Loop) Pattern

 One or more statements in a block are executed repeatedly

 Loop continues while certain condition is true

while (Another rectangle?)

{

Set random fill color;

Set size 10 pixels smaller;

Draw rectangle;

}

The for Loop (Page 1)

 Implements a loop by counting a specific number of iterations (repetitions)

Counter-controlled looping

 Appropriate when exact number of loop repetitions is known

 Format:

for (initialize; booleanExpression; increment)

{

Statement(s) to be repeated;

}

The for Loop (Page 2)

 Example (three expressions in the parentheses):

for (ctr = 0; ctr <= 9; ctr = ctr + 1)

 The initialize component (ctr = 0)

Value assigned to a counter variable when the loop is first encountered in the
program

 The booleanExpression component (ctr <= 9)

Relation condition which is tested to determine if the loop should be entered again

 The increment component (ctr = ctr + 1)

Indicates by what value the counter changes at the beginning of each subsequent
loop

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Strings (Page 1)

 A string is a sequence of characters

 Strings are always defined inside double quotes ("abc")

Alternately characters (type char) are always defined inside single quotes ('a') and
may only contain a single character

Strings (Page 2)

 The class String includes methods for:

Examining individual characters within strings

Comparing strings

Searching strings

Extracting parts of strings

Converting an entire string to uppercase or lowercase

Etc.

The text() Function (Page 1)

 “Draws” data to the screen

The data may be text, a char, an int or a float

 Displays the information specified in the first parameter on the screen in the position
specified by the additional two parameters

 By default the text displays starting from and then to the right of the positions
coordinates

 The fill() function controls the color of the text (default always is white)

The text() Function (Page 2)

 Format:

text(theData, xCoordinate, yCoordinate);

 Examples:

text("Hello", mouseX, mouseY);

text(ctr, 100, 100);

Text.pde

Loops1a.pde (Page 1)

Loops1a.pde (Page 2)

Relationship of draw() and mousePressed() functions

 A draw() function is needed so the output from the mousePressed() function will be
visible

 This is true even if draw() is empty; otherwise there will be no output to the Processing
output window

Assignment Operators

 Also known as op equals operators

 Assigns an updated value to a variable

Operator Example Explanation

+= ctr += 1; ctr = ctr + 1;

-= ctr -= 17; ctr = ctr - 17;

*= ctr *= 8; ctr = ctr * 8;

/= ctr /= 5; ctr = ctr / 5;

Loops1b.pde (Page 1)

Loops1b.pde (Page 2)

Unary Operators (Page 1)

 Unary operators update variables values by adding (increment operator) or subtracting
(decrement operator) value of 1 to (or from)

Operator Example Explanation

++ ctr++; ctr = ctr + 1; (post)

++ ++ctr; ctr = ctr + 1; (pre)

-- ctr--; ctr = ctr - 1; (post)

-- --ctr; ctr = ctr - 1; (pre)

Unary Operators (Page 2)

 If operator is a prefix, the value is returned after it is increased or decreased:

When the variable ctr = 5:

newVar = ++ctr; // newVar will be 6

 If operator is a suffix, the value is returned before:

When the variable ctr = 5:

newVar = ctr++; // newVar will be 5

 Final value of ctr in both cases will be 6

Loops1c.pde (Page 1)

Loops1c.pde (Page 2)

Loops1d.pde (Page 1)

Loops1d.pde (Page 2)

Variable Scope (Page 1)

 Variables are recognized in the block in which they are declared …

Including loop and conditional blocks

 And all subordinate blocks

 If a variable is declared before the first function (i.e. before the setup() function) or
outside of any function, that variable has global scope

It is recognized inside every function in application

Variable Scope (Page 2)

 In the following example, the variable ctr only is accessible inside the mousePressed()
function

It would not be accessible in any other function:

void mousePressed()

{

int ctr;

for (ctr = 0; ctr < 10; ctr++)

{

println(ctr);

}

}

Loops1e.pde (Page 1)

Loops1e.pde (Page 2)

Variable Scope (Page 3)

 In the following example, the variable ctr only is accessible inside the for block:

for (int ctr = 0; ctr < 10; ctr++)

{

println(ctr);

}

println(ctr);

The last statement would result in a compile error

Loops1f.pde (Page 1)

Loops1f.pde (Page 2)

Loops2.pde (Page 1)

Loops2.pde (Page 2)

MiniQuiz No. 1—
Filename: “Loops3.pde”

 Create an output window 400 by 400 pixels

 In the mousePressed() function draw 1000 circles with diameter of 20 pixels at random
locations

 The RGB colors for each individual circle are random values between 0 and 255

 The transparency for each individual circle is a random value between 100 and 255

 Erase the output window at each mousePressed() click to draw 1000 new circles

LoopsMiniQuiz1.pde (Page 1)

LoopsMiniQuiz1.pde (Page 2)

The while Loop (Page 1)

 Continues to repeat a loop as long as a controlling condition is true (pre-test)

 The variable controlling the condition is updated by logic within the loop

Exact number of loops is usually unknown

 Format:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

The while Loop (Page 2)

 Example:

int ctr = 600;

while (ctr > 0)

{

rect(width / 2, width / 2, ctr, ctr);

ctr -= 10;

}

The while Loop

Remember the if Format …

 Format of the if statement:

if (booleanExpression)

{

Statement(s) to be executed if the booleanExpression is true;

}

 Format of the while statement:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

Comparing for and while

 The for example:

for (ctr = 1; ctr <= 10; ctr++)

{

println(ctr);

}

 The while example :

ctr = 1; // Initialize

while (ctr <= 10) // Boolean test

{

println(ctr);

ctr++; // Increment

}

Loops4.pde (Page 1)

Loops4.pde (Page 2)

Loops5.pde (Page 1)

Loops4.pde (Page 2)

The do while Loop (Page 1)

 Continues to repeat a loop as long as a controlling condition is true

 Performs the test at the conclusion of the execution of each loop (post-test)

 Format:

do

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

while (booleanExpression);

The do while Loop (Page 2)

 Example:

do

{

rect(mySize / 2, mySize / 2, ctr, ctr);

ctr -= 10;

}

while (ctr > 0);

 A do while loop always executes at least one time

Comparing while and do while

 The while Format:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

 The do while Format:

do

{

Statement(s) to be repeated as long as the booleanExpression is true;

} while (booleanExpression);

The do while Loop

The while Loop

Loops6.pde (Page 1)

Loops6.pde (Page 2)

Looping Inside draw() Function

 Effectively any loop structure placed inside the draw() function is a nested loop (an
inner loop inside an outer loop)

 Remember that Processing only updates the output display at the conclusion of each
draw() function

Therefore changes that occur during draw() do not render until each of its iterations
is done executing

Loops7.pde (Page 1)

Loops7.pde (Page 2)

Loops7.pde (Page 3)

Loops7.pde (Page 4)

MiniQuiz No. 2—
Filename: “Loops8.pde”

 Create an output window 200 by 200 pixels

 In draw() use a for loop to draw five circles one on top of the next with diameters 50,
40, 30, 20 and 10 pixels at the x location (y is midpoint of output window)

 In the loop vary (calculate) amount of green fill color from full to less for each circle;
red and blue are zero

 Move the x location across the screen; when left or right margins are encountered,
change direction

 Use a variable to control the output window size so that functioning is the same when
the size changes

Loops8.pde (Page 1)

Loops8.pde (Page 2)

Loops8.pde (Page 3)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

CST112—Looping Statements Page 3

Processing: Looping Statements

CST112

Algorithms

 Procedure for solving problem:

1. Actions to be executed

2. Order in which actions are executed

 The order of the elements of an algorithm are very important …

 Even if the order appears insignificant, errors can have far-reaching results

Research of Bohm and Jacopini

 They proposed that all programs can be written in terms of three control structures:

 The type of instructions that specify the order in which statements in a program is
executed

1. Sequence structure—step by step in order

2. Selection (decision or conditional) structure

3. Repetition (iteration or loop) structure—repeating blocks of statements

Iteration (Loop) Statements

 Provides repeated execution of a block of statements

 The loop continues:

1. A specified number of times (counter-controlled) or …

2. While a condition is met (sentinel-controlled)

 Also called repetition or do while structure

 Meaning do the loop while condition is True

Iteration (Loop) Pattern

 One or more statements in a block are executed repeatedly

 Loop continues while certain condition is true

while (Another rectangle?)

{

Set random fill color;

Set size 10 pixels smaller;

Draw rectangle;

}

The for Loop (Page 1)

 Implements a loop by counting a specific number of iterations (repetitions)

Counter-controlled looping

 Appropriate when exact number of loop repetitions is known

 Format:

for (initialize; booleanExpression; increment)

{

Statement(s) to be repeated;

}

The for Loop (Page 2)

 Example (three expressions in the parentheses):

for (ctr = 0; ctr <= 9; ctr = ctr + 1)

 The initialize component (ctr = 0)

Value assigned to a counter variable when the loop is first encountered in the
program

 The booleanExpression component (ctr <= 9)

Relation condition which is tested to determine if the loop should be entered again

 The increment component (ctr = ctr + 1)

Indicates by what value the counter changes at the beginning of each subsequent
loop

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Strings (Page 1)

 A string is a sequence of characters

 Strings are always defined inside double quotes ("abc")

Alternately characters (type char) are always defined inside single quotes ('a') and
may only contain a single character

Strings (Page 2)

 The class String includes methods for:

Examining individual characters within strings

Comparing strings

Searching strings

Extracting parts of strings

Converting an entire string to uppercase or lowercase

Etc.

The text() Function (Page 1)

 “Draws” data to the screen

The data may be text, a char, an int or a float

 Displays the information specified in the first parameter on the screen in the position
specified by the additional two parameters

 By default the text displays starting from and then to the right of the positions
coordinates

 The fill() function controls the color of the text (default always is white)

The text() Function (Page 2)

 Format:

text(theData, xCoordinate, yCoordinate);

 Examples:

text("Hello", mouseX, mouseY);

text(ctr, 100, 100);

Text.pde

Loops1a.pde (Page 1)

Loops1a.pde (Page 2)

Relationship of draw() and mousePressed() functions

 A draw() function is needed so the output from the mousePressed() function will be
visible

 This is true even if draw() is empty; otherwise there will be no output to the Processing
output window

Assignment Operators

 Also known as op equals operators

 Assigns an updated value to a variable

Operator Example Explanation

+= ctr += 1; ctr = ctr + 1;

-= ctr -= 17; ctr = ctr - 17;

*= ctr *= 8; ctr = ctr * 8;

/= ctr /= 5; ctr = ctr / 5;

Loops1b.pde (Page 1)

Loops1b.pde (Page 2)

Unary Operators (Page 1)

 Unary operators update variables values by adding (increment operator) or subtracting
(decrement operator) value of 1 to (or from)

Operator Example Explanation

++ ctr++; ctr = ctr + 1; (post)

++ ++ctr; ctr = ctr + 1; (pre)

-- ctr--; ctr = ctr - 1; (post)

-- --ctr; ctr = ctr - 1; (pre)

Unary Operators (Page 2)

 If operator is a prefix, the value is returned after it is increased or decreased:

When the variable ctr = 5:

newVar = ++ctr; // newVar will be 6

 If operator is a suffix, the value is returned before:

When the variable ctr = 5:

newVar = ctr++; // newVar will be 5

 Final value of ctr in both cases will be 6

Loops1c.pde (Page 1)

Loops1c.pde (Page 2)

Loops1d.pde (Page 1)

Loops1d.pde (Page 2)

Variable Scope (Page 1)

 Variables are recognized in the block in which they are declared …

Including loop and conditional blocks

 And all subordinate blocks

 If a variable is declared before the first function (i.e. before the setup() function) or
outside of any function, that variable has global scope

It is recognized inside every function in application

Variable Scope (Page 2)

 In the following example, the variable ctr only is accessible inside the mousePressed()
function

It would not be accessible in any other function:

void mousePressed()

{

int ctr;

for (ctr = 0; ctr < 10; ctr++)

{

println(ctr);

}

}

Loops1e.pde (Page 1)

Loops1e.pde (Page 2)

Variable Scope (Page 3)

 In the following example, the variable ctr only is accessible inside the for block:

for (int ctr = 0; ctr < 10; ctr++)

{

println(ctr);

}

println(ctr);

The last statement would result in a compile error

Loops1f.pde (Page 1)

Loops1f.pde (Page 2)

Loops2.pde (Page 1)

Loops2.pde (Page 2)

MiniQuiz No. 1—
Filename: “Loops3.pde”

 Create an output window 400 by 400 pixels

 In the mousePressed() function draw 1000 circles with diameter of 20 pixels at random
locations

 The RGB colors for each individual circle are random values between 0 and 255

 The transparency for each individual circle is a random value between 100 and 255

 Erase the output window at each mousePressed() click to draw 1000 new circles

LoopsMiniQuiz1.pde (Page 1)

LoopsMiniQuiz1.pde (Page 2)

The while Loop (Page 1)

 Continues to repeat a loop as long as a controlling condition is true (pre-test)

 The variable controlling the condition is updated by logic within the loop

Exact number of loops is usually unknown

 Format:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

The while Loop (Page 2)

 Example:

int ctr = 600;

while (ctr > 0)

{

rect(width / 2, width / 2, ctr, ctr);

ctr -= 10;

}

The while Loop

Remember the if Format …

 Format of the if statement:

if (booleanExpression)

{

Statement(s) to be executed if the booleanExpression is true;

}

 Format of the while statement:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

Comparing for and while

 The for example:

for (ctr = 1; ctr <= 10; ctr++)

{

println(ctr);

}

 The while example :

ctr = 1; // Initialize

while (ctr <= 10) // Boolean test

{

println(ctr);

ctr++; // Increment

}

Loops4.pde (Page 1)

Loops4.pde (Page 2)

Loops5.pde (Page 1)

Loops4.pde (Page 2)

The do while Loop (Page 1)

 Continues to repeat a loop as long as a controlling condition is true

 Performs the test at the conclusion of the execution of each loop (post-test)

 Format:

do

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

while (booleanExpression);

The do while Loop (Page 2)

 Example:

do

{

rect(mySize / 2, mySize / 2, ctr, ctr);

ctr -= 10;

}

while (ctr > 0);

 A do while loop always executes at least one time

Comparing while and do while

 The while Format:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

 The do while Format:

do

{

Statement(s) to be repeated as long as the booleanExpression is true;

} while (booleanExpression);

The do while Loop

The while Loop

Loops6.pde (Page 1)

Loops6.pde (Page 2)

Looping Inside draw() Function

 Effectively any loop structure placed inside the draw() function is a nested loop (an
inner loop inside an outer loop)

 Remember that Processing only updates the output display at the conclusion of each
draw() function

Therefore changes that occur during draw() do not render until each of its iterations
is done executing

Loops7.pde (Page 1)

Loops7.pde (Page 2)

Loops7.pde (Page 3)

Loops7.pde (Page 4)

MiniQuiz No. 2—
Filename: “Loops8.pde”

 Create an output window 200 by 200 pixels

 In draw() use a for loop to draw five circles one on top of the next with diameters 50,
40, 30, 20 and 10 pixels at the x location (y is midpoint of output window)

 In the loop vary (calculate) amount of green fill color from full to less for each circle;
red and blue are zero

 Move the x location across the screen; when left or right margins are encountered,
change direction

 Use a variable to control the output window size so that functioning is the same when
the size changes

Loops8.pde (Page 1)

Loops8.pde (Page 2)

Loops8.pde (Page 3)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

Processing: Looping Statements

CST112

Algorithms

 Procedure for solving problem:

1. Actions to be executed

2. Order in which actions are executed

 The order of the elements of an algorithm are very important …

 Even if the order appears insignificant, errors can have far-reaching results

Research of Bohm and Jacopini

 They proposed that all programs can be written in terms of three control structures:

 The type of instructions that specify the order in which statements in a program is
executed

1. Sequence structure—step by step in order

2. Selection (decision or conditional) structure

3. Repetition (iteration or loop) structure—repeating blocks of statements

Iteration (Loop) Statements

 Provides repeated execution of a block of statements

 The loop continues:

1. A specified number of times (counter-controlled) or …

2. While a condition is met (sentinel-controlled)

 Also called repetition or do while structure

 Meaning do the loop while condition is True

Iteration (Loop) Pattern

 One or more statements in a block are executed repeatedly

 Loop continues while certain condition is true

while (Another rectangle?)

{

Set random fill color;

Set size 10 pixels smaller;

Draw rectangle;

}

The for Loop (Page 1)

 Implements a loop by counting a specific number of iterations (repetitions)

Counter-controlled looping

 Appropriate when exact number of loop repetitions is known

 Format:

for (initialize; booleanExpression; increment)

{

Statement(s) to be repeated;

}

The for Loop (Page 2)

 Example (three expressions in the parentheses):

for (ctr = 0; ctr <= 9; ctr = ctr + 1)

 The initialize component (ctr = 0)

Value assigned to a counter variable when the loop is first encountered in the
program

 The booleanExpression component (ctr <= 9)

Relation condition which is tested to determine if the loop should be entered again

 The increment component (ctr = ctr + 1)

Indicates by what value the counter changes at the beginning of each subsequent
loop

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Strings (Page 1)

 A string is a sequence of characters

 Strings are always defined inside double quotes ("abc")

Alternately characters (type char) are always defined inside single quotes ('a') and
may only contain a single character

Strings (Page 2)

 The class String includes methods for:

Examining individual characters within strings

Comparing strings

Searching strings

Extracting parts of strings

Converting an entire string to uppercase or lowercase

Etc.

The text() Function (Page 1)

 “Draws” data to the screen

The data may be text, a char, an int or a float

 Displays the information specified in the first parameter on the screen in the position
specified by the additional two parameters

 By default the text displays starting from and then to the right of the positions
coordinates

 The fill() function controls the color of the text (default always is white)

The text() Function (Page 2)

 Format:

text(theData, xCoordinate, yCoordinate);

 Examples:

text("Hello", mouseX, mouseY);

text(ctr, 100, 100);

Text.pde

Loops1a.pde (Page 1)

Loops1a.pde (Page 2)

Relationship of draw() and mousePressed() functions

 A draw() function is needed so the output from the mousePressed() function will be
visible

 This is true even if draw() is empty; otherwise there will be no output to the Processing
output window

Assignment Operators

 Also known as op equals operators

 Assigns an updated value to a variable

Operator Example Explanation

+= ctr += 1; ctr = ctr + 1;

-= ctr -= 17; ctr = ctr - 17;

*= ctr *= 8; ctr = ctr * 8;

/= ctr /= 5; ctr = ctr / 5;

Loops1b.pde (Page 1)

Loops1b.pde (Page 2)

Unary Operators (Page 1)

 Unary operators update variables values by adding (increment operator) or subtracting
(decrement operator) value of 1 to (or from)

Operator Example Explanation

++ ctr++; ctr = ctr + 1; (post)

++ ++ctr; ctr = ctr + 1; (pre)

-- ctr--; ctr = ctr - 1; (post)

-- --ctr; ctr = ctr - 1; (pre)

Unary Operators (Page 2)

 If operator is a prefix, the value is returned after it is increased or decreased:

When the variable ctr = 5:

newVar = ++ctr; // newVar will be 6

 If operator is a suffix, the value is returned before:

When the variable ctr = 5:

newVar = ctr++; // newVar will be 5

 Final value of ctr in both cases will be 6

Loops1c.pde (Page 1)

Loops1c.pde (Page 2)

Loops1d.pde (Page 1)

Loops1d.pde (Page 2)

Variable Scope (Page 1)

 Variables are recognized in the block in which they are declared …

Including loop and conditional blocks

 And all subordinate blocks

 If a variable is declared before the first function (i.e. before the setup() function) or
outside of any function, that variable has global scope

It is recognized inside every function in application

Variable Scope (Page 2)

 In the following example, the variable ctr only is accessible inside the mousePressed()
function

It would not be accessible in any other function:

void mousePressed()

{

int ctr;

for (ctr = 0; ctr < 10; ctr++)

{

println(ctr);

}

}

Loops1e.pde (Page 1)

Loops1e.pde (Page 2)

Variable Scope (Page 3)

 In the following example, the variable ctr only is accessible inside the for block:

for (int ctr = 0; ctr < 10; ctr++)

{

println(ctr);

}

println(ctr);

The last statement would result in a compile error

Loops1f.pde (Page 1)

Loops1f.pde (Page 2)

Loops2.pde (Page 1)

Loops2.pde (Page 2)

MiniQuiz No. 1—
Filename: “Loops3.pde”

 Create an output window 400 by 400 pixels

 In the mousePressed() function draw 1000 circles with diameter of 20 pixels at random
locations

 The RGB colors for each individual circle are random values between 0 and 255

 The transparency for each individual circle is a random value between 100 and 255

 Erase the output window at each mousePressed() click to draw 1000 new circles

LoopsMiniQuiz1.pde (Page 1)

LoopsMiniQuiz1.pde (Page 2)

The while Loop (Page 1)

 Continues to repeat a loop as long as a controlling condition is true (pre-test)

 The variable controlling the condition is updated by logic within the loop

Exact number of loops is usually unknown

 Format:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

The while Loop (Page 2)

 Example:

int ctr = 600;

while (ctr > 0)

{

rect(width / 2, width / 2, ctr, ctr);

ctr -= 10;

}

The while Loop

Remember the if Format …

 Format of the if statement:

if (booleanExpression)

{

Statement(s) to be executed if the booleanExpression is true;

}

 Format of the while statement:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

Comparing for and while

 The for example:

for (ctr = 1; ctr <= 10; ctr++)

{

println(ctr);

}

 The while example :

ctr = 1; // Initialize

while (ctr <= 10) // Boolean test

{

println(ctr);

ctr++; // Increment

}

Loops4.pde (Page 1)

Loops4.pde (Page 2)

Loops5.pde (Page 1)

Loops4.pde (Page 2)

The do while Loop (Page 1)

 Continues to repeat a loop as long as a controlling condition is true

 Performs the test at the conclusion of the execution of each loop (post-test)

 Format:

do

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

while (booleanExpression);

The do while Loop (Page 2)

 Example:

do

{

rect(mySize / 2, mySize / 2, ctr, ctr);

ctr -= 10;

}

while (ctr > 0);

 A do while loop always executes at least one time

Comparing while and do while

 The while Format:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

 The do while Format:

do

{

Statement(s) to be repeated as long as the booleanExpression is true;

} while (booleanExpression);

The do while Loop

The while Loop

Loops6.pde (Page 1)

Loops6.pde (Page 2)

Looping Inside draw() Function

 Effectively any loop structure placed inside the draw() function is a nested loop (an
inner loop inside an outer loop)

 Remember that Processing only updates the output display at the conclusion of each
draw() function

Therefore changes that occur during draw() do not render until each of its iterations
is done executing

Loops7.pde (Page 1)

Loops7.pde (Page 2)

Loops7.pde (Page 3)

Loops7.pde (Page 4)

MiniQuiz No. 2—
Filename: “Loops8.pde”

 Create an output window 200 by 200 pixels

 In draw() use a for loop to draw five circles one on top of the next with diameters 50,
40, 30, 20 and 10 pixels at the x location (y is midpoint of output window)

 In the loop vary (calculate) amount of green fill color from full to less for each circle;
red and blue are zero

 Move the x location across the screen; when left or right margins are encountered,
change direction

 Use a variable to control the output window size so that functioning is the same when
the size changes

Loops8.pde (Page 1)

Loops8.pde (Page 2)

Loops8.pde (Page 3)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

Processing: Looping Statements

CST112

Algorithms

 Procedure for solving problem:

1. Actions to be executed

2. Order in which actions are executed

 The order of the elements of an algorithm are very important …

 Even if the order appears insignificant, errors can have far-reaching results

Research of Bohm and Jacopini

 They proposed that all programs can be written in terms of three control structures:

 The type of instructions that specify the order in which statements in a program is
executed

1. Sequence structure—step by step in order

2. Selection (decision or conditional) structure

3. Repetition (iteration or loop) structure—repeating blocks of statements

Iteration (Loop) Statements

 Provides repeated execution of a block of statements

 The loop continues:

1. A specified number of times (counter-controlled) or …

2. While a condition is met (sentinel-controlled)

 Also called repetition or do while structure

 Meaning do the loop while condition is True

Iteration (Loop) Pattern

 One or more statements in a block are executed repeatedly

 Loop continues while certain condition is true

while (Another rectangle?)

{

Set random fill color;

Set size 10 pixels smaller;

Draw rectangle;

}

The for Loop (Page 1)

 Implements a loop by counting a specific number of iterations (repetitions)

Counter-controlled looping

 Appropriate when exact number of loop repetitions is known

 Format:

for (initialize; booleanExpression; increment)

{

Statement(s) to be repeated;

}

The for Loop (Page 2)

 Example (three expressions in the parentheses):

for (ctr = 0; ctr <= 9; ctr = ctr + 1)

 The initialize component (ctr = 0)

Value assigned to a counter variable when the loop is first encountered in the
program

 The booleanExpression component (ctr <= 9)

Relation condition which is tested to determine if the loop should be entered again

 The increment component (ctr = ctr + 1)

Indicates by what value the counter changes at the beginning of each subsequent
loop

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Strings (Page 1)

 A string is a sequence of characters

 Strings are always defined inside double quotes ("abc")

Alternately characters (type char) are always defined inside single quotes ('a') and
may only contain a single character

Strings (Page 2)

 The class String includes methods for:

Examining individual characters within strings

Comparing strings

Searching strings

Extracting parts of strings

Converting an entire string to uppercase or lowercase

Etc.

The text() Function (Page 1)

 “Draws” data to the screen

The data may be text, a char, an int or a float

 Displays the information specified in the first parameter on the screen in the position
specified by the additional two parameters

 By default the text displays starting from and then to the right of the positions
coordinates

 The fill() function controls the color of the text (default always is white)

The text() Function (Page 2)

 Format:

text(theData, xCoordinate, yCoordinate);

 Examples:

text("Hello", mouseX, mouseY);

text(ctr, 100, 100);

Text.pde

Loops1a.pde (Page 1)

Loops1a.pde (Page 2)

Relationship of draw() and mousePressed() functions

 A draw() function is needed so the output from the mousePressed() function will be
visible

 This is true even if draw() is empty; otherwise there will be no output to the Processing
output window

Assignment Operators

 Also known as op equals operators

 Assigns an updated value to a variable

Operator Example Explanation

+= ctr += 1; ctr = ctr + 1;

-= ctr -= 17; ctr = ctr - 17;

*= ctr *= 8; ctr = ctr * 8;

/= ctr /= 5; ctr = ctr / 5;

Loops1b.pde (Page 1)

Loops1b.pde (Page 2)

Unary Operators (Page 1)

 Unary operators update variables values by adding (increment operator) or subtracting
(decrement operator) value of 1 to (or from)

Operator Example Explanation

++ ctr++; ctr = ctr + 1; (post)

++ ++ctr; ctr = ctr + 1; (pre)

-- ctr--; ctr = ctr - 1; (post)

-- --ctr; ctr = ctr - 1; (pre)

Unary Operators (Page 2)

 If operator is a prefix, the value is returned after it is increased or decreased:

When the variable ctr = 5:

newVar = ++ctr; // newVar will be 6

 If operator is a suffix, the value is returned before:

When the variable ctr = 5:

newVar = ctr++; // newVar will be 5

 Final value of ctr in both cases will be 6

Loops1c.pde (Page 1)

Loops1c.pde (Page 2)

Loops1d.pde (Page 1)

Loops1d.pde (Page 2)

Variable Scope (Page 1)

 Variables are recognized in the block in which they are declared …

Including loop and conditional blocks

 And all subordinate blocks

 If a variable is declared before the first function (i.e. before the setup() function) or
outside of any function, that variable has global scope

It is recognized inside every function in application

Variable Scope (Page 2)

 In the following example, the variable ctr only is accessible inside the mousePressed()
function

It would not be accessible in any other function:

void mousePressed()

{

int ctr;

for (ctr = 0; ctr < 10; ctr++)

{

println(ctr);

}

}

Loops1e.pde (Page 1)

Loops1e.pde (Page 2)

Variable Scope (Page 3)

 In the following example, the variable ctr only is accessible inside the for block:

for (int ctr = 0; ctr < 10; ctr++)

{

println(ctr);

}

println(ctr);

The last statement would result in a compile error

Loops1f.pde (Page 1)

Loops1f.pde (Page 2)

Loops2.pde (Page 1)

Loops2.pde (Page 2)

MiniQuiz No. 1—
Filename: “Loops3.pde”

 Create an output window 400 by 400 pixels

 In the mousePressed() function draw 1000 circles with diameter of 20 pixels at random
locations

 The RGB colors for each individual circle are random values between 0 and 255

 The transparency for each individual circle is a random value between 100 and 255

 Erase the output window at each mousePressed() click to draw 1000 new circles

LoopsMiniQuiz1.pde (Page 1)

LoopsMiniQuiz1.pde (Page 2)

The while Loop (Page 1)

 Continues to repeat a loop as long as a controlling condition is true (pre-test)

 The variable controlling the condition is updated by logic within the loop

Exact number of loops is usually unknown

 Format:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

The while Loop (Page 2)

 Example:

int ctr = 600;

while (ctr > 0)

{

rect(width / 2, width / 2, ctr, ctr);

ctr -= 10;

}

The while Loop

Remember the if Format …

 Format of the if statement:

if (booleanExpression)

{

Statement(s) to be executed if the booleanExpression is true;

}

 Format of the while statement:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

Comparing for and while

 The for example:

for (ctr = 1; ctr <= 10; ctr++)

{

println(ctr);

}

 The while example :

ctr = 1; // Initialize

while (ctr <= 10) // Boolean test

{

println(ctr);

ctr++; // Increment

}

Loops4.pde (Page 1)

Loops4.pde (Page 2)

Loops5.pde (Page 1)

Loops4.pde (Page 2)

The do while Loop (Page 1)

 Continues to repeat a loop as long as a controlling condition is true

 Performs the test at the conclusion of the execution of each loop (post-test)

 Format:

do

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

while (booleanExpression);

The do while Loop (Page 2)

 Example:

do

{

rect(mySize / 2, mySize / 2, ctr, ctr);

ctr -= 10;

}

while (ctr > 0);

 A do while loop always executes at least one time

Comparing while and do while

 The while Format:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

 The do while Format:

do

{

Statement(s) to be repeated as long as the booleanExpression is true;

} while (booleanExpression);

The do while Loop

The while Loop

Loops6.pde (Page 1)

Loops6.pde (Page 2)

Looping Inside draw() Function

 Effectively any loop structure placed inside the draw() function is a nested loop (an
inner loop inside an outer loop)

 Remember that Processing only updates the output display at the conclusion of each
draw() function

Therefore changes that occur during draw() do not render until each of its iterations
is done executing

Loops7.pde (Page 1)

Loops7.pde (Page 2)

Loops7.pde (Page 3)

Loops7.pde (Page 4)

MiniQuiz No. 2—
Filename: “Loops8.pde”

 Create an output window 200 by 200 pixels

 In draw() use a for loop to draw five circles one on top of the next with diameters 50,
40, 30, 20 and 10 pixels at the x location (y is midpoint of output window)

 In the loop vary (calculate) amount of green fill color from full to less for each circle;
red and blue are zero

 Move the x location across the screen; when left or right margins are encountered,
change direction

 Use a variable to control the output window size so that functioning is the same when
the size changes

Loops8.pde (Page 1)

Loops8.pde (Page 2)

Loops8.pde (Page 3)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

Processing: Looping Statements

CST112

Algorithms

 Procedure for solving problem:

1. Actions to be executed

2. Order in which actions are executed

 The order of the elements of an algorithm are very important …

 Even if the order appears insignificant, errors can have far-reaching results

Research of Bohm and Jacopini

 They proposed that all programs can be written in terms of three control structures:

 The type of instructions that specify the order in which statements in a program is
executed

1. Sequence structure—step by step in order

2. Selection (decision or conditional) structure

3. Repetition (iteration or loop) structure—repeating blocks of statements

Iteration (Loop) Statements

 Provides repeated execution of a block of statements

 The loop continues:

1. A specified number of times (counter-controlled) or …

2. While a condition is met (sentinel-controlled)

 Also called repetition or do while structure

 Meaning do the loop while condition is True

Iteration (Loop) Pattern

 One or more statements in a block are executed repeatedly

 Loop continues while certain condition is true

while (Another rectangle?)

{

Set random fill color;

Set size 10 pixels smaller;

Draw rectangle;

}

The for Loop (Page 1)

 Implements a loop by counting a specific number of iterations (repetitions)

Counter-controlled looping

 Appropriate when exact number of loop repetitions is known

 Format:

for (initialize; booleanExpression; increment)

{

Statement(s) to be repeated;

}

The for Loop (Page 2)

 Example (three expressions in the parentheses):

for (ctr = 0; ctr <= 9; ctr = ctr + 1)

 The initialize component (ctr = 0)

Value assigned to a counter variable when the loop is first encountered in the
program

 The booleanExpression component (ctr <= 9)

Relation condition which is tested to determine if the loop should be entered again

 The increment component (ctr = ctr + 1)

Indicates by what value the counter changes at the beginning of each subsequent
loop

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Strings (Page 1)

 A string is a sequence of characters

 Strings are always defined inside double quotes ("abc")

Alternately characters (type char) are always defined inside single quotes ('a') and
may only contain a single character

Strings (Page 2)

 The class String includes methods for:

Examining individual characters within strings

Comparing strings

Searching strings

Extracting parts of strings

Converting an entire string to uppercase or lowercase

Etc.

The text() Function (Page 1)

 “Draws” data to the screen

The data may be text, a char, an int or a float

 Displays the information specified in the first parameter on the screen in the position
specified by the additional two parameters

 By default the text displays starting from and then to the right of the positions
coordinates

 The fill() function controls the color of the text (default always is white)

The text() Function (Page 2)

 Format:

text(theData, xCoordinate, yCoordinate);

 Examples:

text("Hello", mouseX, mouseY);

text(ctr, 100, 100);

Text.pde

Loops1a.pde (Page 1)

Loops1a.pde (Page 2)

Relationship of draw() and mousePressed() functions

 A draw() function is needed so the output from the mousePressed() function will be
visible

 This is true even if draw() is empty; otherwise there will be no output to the Processing
output window

Assignment Operators

 Also known as op equals operators

 Assigns an updated value to a variable

Operator Example Explanation

+= ctr += 1; ctr = ctr + 1;

-= ctr -= 17; ctr = ctr - 17;

*= ctr *= 8; ctr = ctr * 8;

/= ctr /= 5; ctr = ctr / 5;

Loops1b.pde (Page 1)

Loops1b.pde (Page 2)

Unary Operators (Page 1)

 Unary operators update variables values by adding (increment operator) or subtracting
(decrement operator) value of 1 to (or from)

Operator Example Explanation

++ ctr++; ctr = ctr + 1; (post)

++ ++ctr; ctr = ctr + 1; (pre)

-- ctr--; ctr = ctr - 1; (post)

-- --ctr; ctr = ctr - 1; (pre)

Unary Operators (Page 2)

 If operator is a prefix, the value is returned after it is increased or decreased:

When the variable ctr = 5:

newVar = ++ctr; // newVar will be 6

 If operator is a suffix, the value is returned before:

When the variable ctr = 5:

newVar = ctr++; // newVar will be 5

 Final value of ctr in both cases will be 6

Loops1c.pde (Page 1)

Loops1c.pde (Page 2)

Loops1d.pde (Page 1)

Loops1d.pde (Page 2)

Variable Scope (Page 1)

 Variables are recognized in the block in which they are declared …

Including loop and conditional blocks

 And all subordinate blocks

 If a variable is declared before the first function (i.e. before the setup() function) or
outside of any function, that variable has global scope

It is recognized inside every function in application

Variable Scope (Page 2)

 In the following example, the variable ctr only is accessible inside the mousePressed()
function

It would not be accessible in any other function:

void mousePressed()

{

int ctr;

for (ctr = 0; ctr < 10; ctr++)

{

println(ctr);

}

}

Loops1e.pde (Page 1)

Loops1e.pde (Page 2)

Variable Scope (Page 3)

 In the following example, the variable ctr only is accessible inside the for block:

for (int ctr = 0; ctr < 10; ctr++)

{

println(ctr);

}

println(ctr);

The last statement would result in a compile error

Loops1f.pde (Page 1)

Loops1f.pde (Page 2)

Loops2.pde (Page 1)

Loops2.pde (Page 2)

MiniQuiz No. 1—
Filename: “Loops3.pde”

 Create an output window 400 by 400 pixels

 In the mousePressed() function draw 1000 circles with diameter of 20 pixels at random
locations

 The RGB colors for each individual circle are random values between 0 and 255

 The transparency for each individual circle is a random value between 100 and 255

 Erase the output window at each mousePressed() click to draw 1000 new circles

LoopsMiniQuiz1.pde (Page 1)

LoopsMiniQuiz1.pde (Page 2)

The while Loop (Page 1)

 Continues to repeat a loop as long as a controlling condition is true (pre-test)

 The variable controlling the condition is updated by logic within the loop

Exact number of loops is usually unknown

 Format:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

The while Loop (Page 2)

 Example:

int ctr = 600;

while (ctr > 0)

{

rect(width / 2, width / 2, ctr, ctr);

ctr -= 10;

}

The while Loop

Remember the if Format …

 Format of the if statement:

if (booleanExpression)

{

Statement(s) to be executed if the booleanExpression is true;

}

 Format of the while statement:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

Comparing for and while

 The for example:

for (ctr = 1; ctr <= 10; ctr++)

{

println(ctr);

}

 The while example :

ctr = 1; // Initialize

while (ctr <= 10) // Boolean test

{

println(ctr);

ctr++; // Increment

}

Loops4.pde (Page 1)

Loops4.pde (Page 2)

Loops5.pde (Page 1)

Loops4.pde (Page 2)

The do while Loop (Page 1)

 Continues to repeat a loop as long as a controlling condition is true

 Performs the test at the conclusion of the execution of each loop (post-test)

 Format:

do

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

while (booleanExpression);

The do while Loop (Page 2)

 Example:

do

{

rect(mySize / 2, mySize / 2, ctr, ctr);

ctr -= 10;

}

while (ctr > 0);

 A do while loop always executes at least one time

Comparing while and do while

 The while Format:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

 The do while Format:

do

{

Statement(s) to be repeated as long as the booleanExpression is true;

} while (booleanExpression);

The do while Loop

The while Loop

Loops6.pde (Page 1)

Loops6.pde (Page 2)

Looping Inside draw() Function

 Effectively any loop structure placed inside the draw() function is a nested loop (an
inner loop inside an outer loop)

 Remember that Processing only updates the output display at the conclusion of each
draw() function

Therefore changes that occur during draw() do not render until each of its iterations
is done executing

Loops7.pde (Page 1)

Loops7.pde (Page 2)

Loops7.pde (Page 3)

Loops7.pde (Page 4)

MiniQuiz No. 2—
Filename: “Loops8.pde”

 Create an output window 200 by 200 pixels

 In draw() use a for loop to draw five circles one on top of the next with diameters 50,
40, 30, 20 and 10 pixels at the x location (y is midpoint of output window)

 In the loop vary (calculate) amount of green fill color from full to less for each circle;
red and blue are zero

 Move the x location across the screen; when left or right margins are encountered,
change direction

 Use a variable to control the output window size so that functioning is the same when
the size changes

Loops8.pde (Page 1)

Loops8.pde (Page 2)

Loops8.pde (Page 3)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

CST112—Looping Statements Page 4

Processing: Looping Statements

CST112

Algorithms

 Procedure for solving problem:

1. Actions to be executed

2. Order in which actions are executed

 The order of the elements of an algorithm are very important …

 Even if the order appears insignificant, errors can have far-reaching results

Research of Bohm and Jacopini

 They proposed that all programs can be written in terms of three control structures:

 The type of instructions that specify the order in which statements in a program is
executed

1. Sequence structure—step by step in order

2. Selection (decision or conditional) structure

3. Repetition (iteration or loop) structure—repeating blocks of statements

Iteration (Loop) Statements

 Provides repeated execution of a block of statements

 The loop continues:

1. A specified number of times (counter-controlled) or …

2. While a condition is met (sentinel-controlled)

 Also called repetition or do while structure

 Meaning do the loop while condition is True

Iteration (Loop) Pattern

 One or more statements in a block are executed repeatedly

 Loop continues while certain condition is true

while (Another rectangle?)

{

Set random fill color;

Set size 10 pixels smaller;

Draw rectangle;

}

The for Loop (Page 1)

 Implements a loop by counting a specific number of iterations (repetitions)

Counter-controlled looping

 Appropriate when exact number of loop repetitions is known

 Format:

for (initialize; booleanExpression; increment)

{

Statement(s) to be repeated;

}

The for Loop (Page 2)

 Example (three expressions in the parentheses):

for (ctr = 0; ctr <= 9; ctr = ctr + 1)

 The initialize component (ctr = 0)

Value assigned to a counter variable when the loop is first encountered in the
program

 The booleanExpression component (ctr <= 9)

Relation condition which is tested to determine if the loop should be entered again

 The increment component (ctr = ctr + 1)

Indicates by what value the counter changes at the beginning of each subsequent
loop

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Strings (Page 1)

 A string is a sequence of characters

 Strings are always defined inside double quotes ("abc")

Alternately characters (type char) are always defined inside single quotes ('a') and
may only contain a single character

Strings (Page 2)

 The class String includes methods for:

Examining individual characters within strings

Comparing strings

Searching strings

Extracting parts of strings

Converting an entire string to uppercase or lowercase

Etc.

The text() Function (Page 1)

 “Draws” data to the screen

The data may be text, a char, an int or a float

 Displays the information specified in the first parameter on the screen in the position
specified by the additional two parameters

 By default the text displays starting from and then to the right of the positions
coordinates

 The fill() function controls the color of the text (default always is white)

The text() Function (Page 2)

 Format:

text(theData, xCoordinate, yCoordinate);

 Examples:

text("Hello", mouseX, mouseY);

text(ctr, 100, 100);

Text.pde

Loops1a.pde (Page 1)

Loops1a.pde (Page 2)

Relationship of draw() and mousePressed() functions

 A draw() function is needed so the output from the mousePressed() function will be
visible

 This is true even if draw() is empty; otherwise there will be no output to the Processing
output window

Assignment Operators

 Also known as op equals operators

 Assigns an updated value to a variable

Operator Example Explanation

+= ctr += 1; ctr = ctr + 1;

-= ctr -= 17; ctr = ctr - 17;

*= ctr *= 8; ctr = ctr * 8;

/= ctr /= 5; ctr = ctr / 5;

Loops1b.pde (Page 1)

Loops1b.pde (Page 2)

Unary Operators (Page 1)

 Unary operators update variables values by adding (increment operator) or subtracting
(decrement operator) value of 1 to (or from)

Operator Example Explanation

++ ctr++; ctr = ctr + 1; (post)

++ ++ctr; ctr = ctr + 1; (pre)

-- ctr--; ctr = ctr - 1; (post)

-- --ctr; ctr = ctr - 1; (pre)

Unary Operators (Page 2)

 If operator is a prefix, the value is returned after it is increased or decreased:

When the variable ctr = 5:

newVar = ++ctr; // newVar will be 6

 If operator is a suffix, the value is returned before:

When the variable ctr = 5:

newVar = ctr++; // newVar will be 5

 Final value of ctr in both cases will be 6

Loops1c.pde (Page 1)

Loops1c.pde (Page 2)

Loops1d.pde (Page 1)

Loops1d.pde (Page 2)

Variable Scope (Page 1)

 Variables are recognized in the block in which they are declared …

Including loop and conditional blocks

 And all subordinate blocks

 If a variable is declared before the first function (i.e. before the setup() function) or
outside of any function, that variable has global scope

It is recognized inside every function in application

Variable Scope (Page 2)

 In the following example, the variable ctr only is accessible inside the mousePressed()
function

It would not be accessible in any other function:

void mousePressed()

{

int ctr;

for (ctr = 0; ctr < 10; ctr++)

{

println(ctr);

}

}

Loops1e.pde (Page 1)

Loops1e.pde (Page 2)

Variable Scope (Page 3)

 In the following example, the variable ctr only is accessible inside the for block:

for (int ctr = 0; ctr < 10; ctr++)

{

println(ctr);

}

println(ctr);

The last statement would result in a compile error

Loops1f.pde (Page 1)

Loops1f.pde (Page 2)

Loops2.pde (Page 1)

Loops2.pde (Page 2)

MiniQuiz No. 1—
Filename: “Loops3.pde”

 Create an output window 400 by 400 pixels

 In the mousePressed() function draw 1000 circles with diameter of 20 pixels at random
locations

 The RGB colors for each individual circle are random values between 0 and 255

 The transparency for each individual circle is a random value between 100 and 255

 Erase the output window at each mousePressed() click to draw 1000 new circles

LoopsMiniQuiz1.pde (Page 1)

LoopsMiniQuiz1.pde (Page 2)

The while Loop (Page 1)

 Continues to repeat a loop as long as a controlling condition is true (pre-test)

 The variable controlling the condition is updated by logic within the loop

Exact number of loops is usually unknown

 Format:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

The while Loop (Page 2)

 Example:

int ctr = 600;

while (ctr > 0)

{

rect(width / 2, width / 2, ctr, ctr);

ctr -= 10;

}

The while Loop

Remember the if Format …

 Format of the if statement:

if (booleanExpression)

{

Statement(s) to be executed if the booleanExpression is true;

}

 Format of the while statement:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

Comparing for and while

 The for example:

for (ctr = 1; ctr <= 10; ctr++)

{

println(ctr);

}

 The while example :

ctr = 1; // Initialize

while (ctr <= 10) // Boolean test

{

println(ctr);

ctr++; // Increment

}

Loops4.pde (Page 1)

Loops4.pde (Page 2)

Loops5.pde (Page 1)

Loops4.pde (Page 2)

The do while Loop (Page 1)

 Continues to repeat a loop as long as a controlling condition is true

 Performs the test at the conclusion of the execution of each loop (post-test)

 Format:

do

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

while (booleanExpression);

The do while Loop (Page 2)

 Example:

do

{

rect(mySize / 2, mySize / 2, ctr, ctr);

ctr -= 10;

}

while (ctr > 0);

 A do while loop always executes at least one time

Comparing while and do while

 The while Format:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

 The do while Format:

do

{

Statement(s) to be repeated as long as the booleanExpression is true;

} while (booleanExpression);

The do while Loop

The while Loop

Loops6.pde (Page 1)

Loops6.pde (Page 2)

Looping Inside draw() Function

 Effectively any loop structure placed inside the draw() function is a nested loop (an
inner loop inside an outer loop)

 Remember that Processing only updates the output display at the conclusion of each
draw() function

Therefore changes that occur during draw() do not render until each of its iterations
is done executing

Loops7.pde (Page 1)

Loops7.pde (Page 2)

Loops7.pde (Page 3)

Loops7.pde (Page 4)

MiniQuiz No. 2—
Filename: “Loops8.pde”

 Create an output window 200 by 200 pixels

 In draw() use a for loop to draw five circles one on top of the next with diameters 50,
40, 30, 20 and 10 pixels at the x location (y is midpoint of output window)

 In the loop vary (calculate) amount of green fill color from full to less for each circle;
red and blue are zero

 Move the x location across the screen; when left or right margins are encountered,
change direction

 Use a variable to control the output window size so that functioning is the same when
the size changes

Loops8.pde (Page 1)

Loops8.pde (Page 2)

Loops8.pde (Page 3)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

Processing: Looping Statements

CST112

Algorithms

 Procedure for solving problem:

1. Actions to be executed

2. Order in which actions are executed

 The order of the elements of an algorithm are very important …

 Even if the order appears insignificant, errors can have far-reaching results

Research of Bohm and Jacopini

 They proposed that all programs can be written in terms of three control structures:

 The type of instructions that specify the order in which statements in a program is
executed

1. Sequence structure—step by step in order

2. Selection (decision or conditional) structure

3. Repetition (iteration or loop) structure—repeating blocks of statements

Iteration (Loop) Statements

 Provides repeated execution of a block of statements

 The loop continues:

1. A specified number of times (counter-controlled) or …

2. While a condition is met (sentinel-controlled)

 Also called repetition or do while structure

 Meaning do the loop while condition is True

Iteration (Loop) Pattern

 One or more statements in a block are executed repeatedly

 Loop continues while certain condition is true

while (Another rectangle?)

{

Set random fill color;

Set size 10 pixels smaller;

Draw rectangle;

}

The for Loop (Page 1)

 Implements a loop by counting a specific number of iterations (repetitions)

Counter-controlled looping

 Appropriate when exact number of loop repetitions is known

 Format:

for (initialize; booleanExpression; increment)

{

Statement(s) to be repeated;

}

The for Loop (Page 2)

 Example (three expressions in the parentheses):

for (ctr = 0; ctr <= 9; ctr = ctr + 1)

 The initialize component (ctr = 0)

Value assigned to a counter variable when the loop is first encountered in the
program

 The booleanExpression component (ctr <= 9)

Relation condition which is tested to determine if the loop should be entered again

 The increment component (ctr = ctr + 1)

Indicates by what value the counter changes at the beginning of each subsequent
loop

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Strings (Page 1)

 A string is a sequence of characters

 Strings are always defined inside double quotes ("abc")

Alternately characters (type char) are always defined inside single quotes ('a') and
may only contain a single character

Strings (Page 2)

 The class String includes methods for:

Examining individual characters within strings

Comparing strings

Searching strings

Extracting parts of strings

Converting an entire string to uppercase or lowercase

Etc.

The text() Function (Page 1)

 “Draws” data to the screen

The data may be text, a char, an int or a float

 Displays the information specified in the first parameter on the screen in the position
specified by the additional two parameters

 By default the text displays starting from and then to the right of the positions
coordinates

 The fill() function controls the color of the text (default always is white)

The text() Function (Page 2)

 Format:

text(theData, xCoordinate, yCoordinate);

 Examples:

text("Hello", mouseX, mouseY);

text(ctr, 100, 100);

Text.pde

Loops1a.pde (Page 1)

Loops1a.pde (Page 2)

Relationship of draw() and mousePressed() functions

 A draw() function is needed so the output from the mousePressed() function will be
visible

 This is true even if draw() is empty; otherwise there will be no output to the Processing
output window

Assignment Operators

 Also known as op equals operators

 Assigns an updated value to a variable

Operator Example Explanation

+= ctr += 1; ctr = ctr + 1;

-= ctr -= 17; ctr = ctr - 17;

*= ctr *= 8; ctr = ctr * 8;

/= ctr /= 5; ctr = ctr / 5;

Loops1b.pde (Page 1)

Loops1b.pde (Page 2)

Unary Operators (Page 1)

 Unary operators update variables values by adding (increment operator) or subtracting
(decrement operator) value of 1 to (or from)

Operator Example Explanation

++ ctr++; ctr = ctr + 1; (post)

++ ++ctr; ctr = ctr + 1; (pre)

-- ctr--; ctr = ctr - 1; (post)

-- --ctr; ctr = ctr - 1; (pre)

Unary Operators (Page 2)

 If operator is a prefix, the value is returned after it is increased or decreased:

When the variable ctr = 5:

newVar = ++ctr; // newVar will be 6

 If operator is a suffix, the value is returned before:

When the variable ctr = 5:

newVar = ctr++; // newVar will be 5

 Final value of ctr in both cases will be 6

Loops1c.pde (Page 1)

Loops1c.pde (Page 2)

Loops1d.pde (Page 1)

Loops1d.pde (Page 2)

Variable Scope (Page 1)

 Variables are recognized in the block in which they are declared …

Including loop and conditional blocks

 And all subordinate blocks

 If a variable is declared before the first function (i.e. before the setup() function) or
outside of any function, that variable has global scope

It is recognized inside every function in application

Variable Scope (Page 2)

 In the following example, the variable ctr only is accessible inside the mousePressed()
function

It would not be accessible in any other function:

void mousePressed()

{

int ctr;

for (ctr = 0; ctr < 10; ctr++)

{

println(ctr);

}

}

Loops1e.pde (Page 1)

Loops1e.pde (Page 2)

Variable Scope (Page 3)

 In the following example, the variable ctr only is accessible inside the for block:

for (int ctr = 0; ctr < 10; ctr++)

{

println(ctr);

}

println(ctr);

The last statement would result in a compile error

Loops1f.pde (Page 1)

Loops1f.pde (Page 2)

Loops2.pde (Page 1)

Loops2.pde (Page 2)

MiniQuiz No. 1—
Filename: “Loops3.pde”

 Create an output window 400 by 400 pixels

 In the mousePressed() function draw 1000 circles with diameter of 20 pixels at random
locations

 The RGB colors for each individual circle are random values between 0 and 255

 The transparency for each individual circle is a random value between 100 and 255

 Erase the output window at each mousePressed() click to draw 1000 new circles

LoopsMiniQuiz1.pde (Page 1)

LoopsMiniQuiz1.pde (Page 2)

The while Loop (Page 1)

 Continues to repeat a loop as long as a controlling condition is true (pre-test)

 The variable controlling the condition is updated by logic within the loop

Exact number of loops is usually unknown

 Format:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

The while Loop (Page 2)

 Example:

int ctr = 600;

while (ctr > 0)

{

rect(width / 2, width / 2, ctr, ctr);

ctr -= 10;

}

The while Loop

Remember the if Format …

 Format of the if statement:

if (booleanExpression)

{

Statement(s) to be executed if the booleanExpression is true;

}

 Format of the while statement:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

Comparing for and while

 The for example:

for (ctr = 1; ctr <= 10; ctr++)

{

println(ctr);

}

 The while example :

ctr = 1; // Initialize

while (ctr <= 10) // Boolean test

{

println(ctr);

ctr++; // Increment

}

Loops4.pde (Page 1)

Loops4.pde (Page 2)

Loops5.pde (Page 1)

Loops4.pde (Page 2)

The do while Loop (Page 1)

 Continues to repeat a loop as long as a controlling condition is true

 Performs the test at the conclusion of the execution of each loop (post-test)

 Format:

do

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

while (booleanExpression);

The do while Loop (Page 2)

 Example:

do

{

rect(mySize / 2, mySize / 2, ctr, ctr);

ctr -= 10;

}

while (ctr > 0);

 A do while loop always executes at least one time

Comparing while and do while

 The while Format:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

 The do while Format:

do

{

Statement(s) to be repeated as long as the booleanExpression is true;

} while (booleanExpression);

The do while Loop

The while Loop

Loops6.pde (Page 1)

Loops6.pde (Page 2)

Looping Inside draw() Function

 Effectively any loop structure placed inside the draw() function is a nested loop (an
inner loop inside an outer loop)

 Remember that Processing only updates the output display at the conclusion of each
draw() function

Therefore changes that occur during draw() do not render until each of its iterations
is done executing

Loops7.pde (Page 1)

Loops7.pde (Page 2)

Loops7.pde (Page 3)

Loops7.pde (Page 4)

MiniQuiz No. 2—
Filename: “Loops8.pde”

 Create an output window 200 by 200 pixels

 In draw() use a for loop to draw five circles one on top of the next with diameters 50,
40, 30, 20 and 10 pixels at the x location (y is midpoint of output window)

 In the loop vary (calculate) amount of green fill color from full to less for each circle;
red and blue are zero

 Move the x location across the screen; when left or right margins are encountered,
change direction

 Use a variable to control the output window size so that functioning is the same when
the size changes

Loops8.pde (Page 1)

Loops8.pde (Page 2)

Loops8.pde (Page 3)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

Processing: Looping Statements

CST112

Algorithms

 Procedure for solving problem:

1. Actions to be executed

2. Order in which actions are executed

 The order of the elements of an algorithm are very important …

 Even if the order appears insignificant, errors can have far-reaching results

Research of Bohm and Jacopini

 They proposed that all programs can be written in terms of three control structures:

 The type of instructions that specify the order in which statements in a program is
executed

1. Sequence structure—step by step in order

2. Selection (decision or conditional) structure

3. Repetition (iteration or loop) structure—repeating blocks of statements

Iteration (Loop) Statements

 Provides repeated execution of a block of statements

 The loop continues:

1. A specified number of times (counter-controlled) or …

2. While a condition is met (sentinel-controlled)

 Also called repetition or do while structure

 Meaning do the loop while condition is True

Iteration (Loop) Pattern

 One or more statements in a block are executed repeatedly

 Loop continues while certain condition is true

while (Another rectangle?)

{

Set random fill color;

Set size 10 pixels smaller;

Draw rectangle;

}

The for Loop (Page 1)

 Implements a loop by counting a specific number of iterations (repetitions)

Counter-controlled looping

 Appropriate when exact number of loop repetitions is known

 Format:

for (initialize; booleanExpression; increment)

{

Statement(s) to be repeated;

}

The for Loop (Page 2)

 Example (three expressions in the parentheses):

for (ctr = 0; ctr <= 9; ctr = ctr + 1)

 The initialize component (ctr = 0)

Value assigned to a counter variable when the loop is first encountered in the
program

 The booleanExpression component (ctr <= 9)

Relation condition which is tested to determine if the loop should be entered again

 The increment component (ctr = ctr + 1)

Indicates by what value the counter changes at the beginning of each subsequent
loop

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Strings (Page 1)

 A string is a sequence of characters

 Strings are always defined inside double quotes ("abc")

Alternately characters (type char) are always defined inside single quotes ('a') and
may only contain a single character

Strings (Page 2)

 The class String includes methods for:

Examining individual characters within strings

Comparing strings

Searching strings

Extracting parts of strings

Converting an entire string to uppercase or lowercase

Etc.

The text() Function (Page 1)

 “Draws” data to the screen

The data may be text, a char, an int or a float

 Displays the information specified in the first parameter on the screen in the position
specified by the additional two parameters

 By default the text displays starting from and then to the right of the positions
coordinates

 The fill() function controls the color of the text (default always is white)

The text() Function (Page 2)

 Format:

text(theData, xCoordinate, yCoordinate);

 Examples:

text("Hello", mouseX, mouseY);

text(ctr, 100, 100);

Text.pde

Loops1a.pde (Page 1)

Loops1a.pde (Page 2)

Relationship of draw() and mousePressed() functions

 A draw() function is needed so the output from the mousePressed() function will be
visible

 This is true even if draw() is empty; otherwise there will be no output to the Processing
output window

Assignment Operators

 Also known as op equals operators

 Assigns an updated value to a variable

Operator Example Explanation

+= ctr += 1; ctr = ctr + 1;

-= ctr -= 17; ctr = ctr - 17;

*= ctr *= 8; ctr = ctr * 8;

/= ctr /= 5; ctr = ctr / 5;

Loops1b.pde (Page 1)

Loops1b.pde (Page 2)

Unary Operators (Page 1)

 Unary operators update variables values by adding (increment operator) or subtracting
(decrement operator) value of 1 to (or from)

Operator Example Explanation

++ ctr++; ctr = ctr + 1; (post)

++ ++ctr; ctr = ctr + 1; (pre)

-- ctr--; ctr = ctr - 1; (post)

-- --ctr; ctr = ctr - 1; (pre)

Unary Operators (Page 2)

 If operator is a prefix, the value is returned after it is increased or decreased:

When the variable ctr = 5:

newVar = ++ctr; // newVar will be 6

 If operator is a suffix, the value is returned before:

When the variable ctr = 5:

newVar = ctr++; // newVar will be 5

 Final value of ctr in both cases will be 6

Loops1c.pde (Page 1)

Loops1c.pde (Page 2)

Loops1d.pde (Page 1)

Loops1d.pde (Page 2)

Variable Scope (Page 1)

 Variables are recognized in the block in which they are declared …

Including loop and conditional blocks

 And all subordinate blocks

 If a variable is declared before the first function (i.e. before the setup() function) or
outside of any function, that variable has global scope

It is recognized inside every function in application

Variable Scope (Page 2)

 In the following example, the variable ctr only is accessible inside the mousePressed()
function

It would not be accessible in any other function:

void mousePressed()

{

int ctr;

for (ctr = 0; ctr < 10; ctr++)

{

println(ctr);

}

}

Loops1e.pde (Page 1)

Loops1e.pde (Page 2)

Variable Scope (Page 3)

 In the following example, the variable ctr only is accessible inside the for block:

for (int ctr = 0; ctr < 10; ctr++)

{

println(ctr);

}

println(ctr);

The last statement would result in a compile error

Loops1f.pde (Page 1)

Loops1f.pde (Page 2)

Loops2.pde (Page 1)

Loops2.pde (Page 2)

MiniQuiz No. 1—
Filename: “Loops3.pde”

 Create an output window 400 by 400 pixels

 In the mousePressed() function draw 1000 circles with diameter of 20 pixels at random
locations

 The RGB colors for each individual circle are random values between 0 and 255

 The transparency for each individual circle is a random value between 100 and 255

 Erase the output window at each mousePressed() click to draw 1000 new circles

LoopsMiniQuiz1.pde (Page 1)

LoopsMiniQuiz1.pde (Page 2)

The while Loop (Page 1)

 Continues to repeat a loop as long as a controlling condition is true (pre-test)

 The variable controlling the condition is updated by logic within the loop

Exact number of loops is usually unknown

 Format:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

The while Loop (Page 2)

 Example:

int ctr = 600;

while (ctr > 0)

{

rect(width / 2, width / 2, ctr, ctr);

ctr -= 10;

}

The while Loop

Remember the if Format …

 Format of the if statement:

if (booleanExpression)

{

Statement(s) to be executed if the booleanExpression is true;

}

 Format of the while statement:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

Comparing for and while

 The for example:

for (ctr = 1; ctr <= 10; ctr++)

{

println(ctr);

}

 The while example :

ctr = 1; // Initialize

while (ctr <= 10) // Boolean test

{

println(ctr);

ctr++; // Increment

}

Loops4.pde (Page 1)

Loops4.pde (Page 2)

Loops5.pde (Page 1)

Loops4.pde (Page 2)

The do while Loop (Page 1)

 Continues to repeat a loop as long as a controlling condition is true

 Performs the test at the conclusion of the execution of each loop (post-test)

 Format:

do

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

while (booleanExpression);

The do while Loop (Page 2)

 Example:

do

{

rect(mySize / 2, mySize / 2, ctr, ctr);

ctr -= 10;

}

while (ctr > 0);

 A do while loop always executes at least one time

Comparing while and do while

 The while Format:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

 The do while Format:

do

{

Statement(s) to be repeated as long as the booleanExpression is true;

} while (booleanExpression);

The do while Loop

The while Loop

Loops6.pde (Page 1)

Loops6.pde (Page 2)

Looping Inside draw() Function

 Effectively any loop structure placed inside the draw() function is a nested loop (an
inner loop inside an outer loop)

 Remember that Processing only updates the output display at the conclusion of each
draw() function

Therefore changes that occur during draw() do not render until each of its iterations
is done executing

Loops7.pde (Page 1)

Loops7.pde (Page 2)

Loops7.pde (Page 3)

Loops7.pde (Page 4)

MiniQuiz No. 2—
Filename: “Loops8.pde”

 Create an output window 200 by 200 pixels

 In draw() use a for loop to draw five circles one on top of the next with diameters 50,
40, 30, 20 and 10 pixels at the x location (y is midpoint of output window)

 In the loop vary (calculate) amount of green fill color from full to less for each circle;
red and blue are zero

 Move the x location across the screen; when left or right margins are encountered,
change direction

 Use a variable to control the output window size so that functioning is the same when
the size changes

Loops8.pde (Page 1)

Loops8.pde (Page 2)

Loops8.pde (Page 3)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

CST112—Looping Statements Page 5

Processing: Looping Statements

CST112

Algorithms

 Procedure for solving problem:

1. Actions to be executed

2. Order in which actions are executed

 The order of the elements of an algorithm are very important …

 Even if the order appears insignificant, errors can have far-reaching results

Research of Bohm and Jacopini

 They proposed that all programs can be written in terms of three control structures:

 The type of instructions that specify the order in which statements in a program is
executed

1. Sequence structure—step by step in order

2. Selection (decision or conditional) structure

3. Repetition (iteration or loop) structure—repeating blocks of statements

Iteration (Loop) Statements

 Provides repeated execution of a block of statements

 The loop continues:

1. A specified number of times (counter-controlled) or …

2. While a condition is met (sentinel-controlled)

 Also called repetition or do while structure

 Meaning do the loop while condition is True

Iteration (Loop) Pattern

 One or more statements in a block are executed repeatedly

 Loop continues while certain condition is true

while (Another rectangle?)

{

Set random fill color;

Set size 10 pixels smaller;

Draw rectangle;

}

The for Loop (Page 1)

 Implements a loop by counting a specific number of iterations (repetitions)

Counter-controlled looping

 Appropriate when exact number of loop repetitions is known

 Format:

for (initialize; booleanExpression; increment)

{

Statement(s) to be repeated;

}

The for Loop (Page 2)

 Example (three expressions in the parentheses):

for (ctr = 0; ctr <= 9; ctr = ctr + 1)

 The initialize component (ctr = 0)

Value assigned to a counter variable when the loop is first encountered in the
program

 The booleanExpression component (ctr <= 9)

Relation condition which is tested to determine if the loop should be entered again

 The increment component (ctr = ctr + 1)

Indicates by what value the counter changes at the beginning of each subsequent
loop

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Strings (Page 1)

 A string is a sequence of characters

 Strings are always defined inside double quotes ("abc")

Alternately characters (type char) are always defined inside single quotes ('a') and
may only contain a single character

Strings (Page 2)

 The class String includes methods for:

Examining individual characters within strings

Comparing strings

Searching strings

Extracting parts of strings

Converting an entire string to uppercase or lowercase

Etc.

The text() Function (Page 1)

 “Draws” data to the screen

The data may be text, a char, an int or a float

 Displays the information specified in the first parameter on the screen in the position
specified by the additional two parameters

 By default the text displays starting from and then to the right of the positions
coordinates

 The fill() function controls the color of the text (default always is white)

The text() Function (Page 2)

 Format:

text(theData, xCoordinate, yCoordinate);

 Examples:

text("Hello", mouseX, mouseY);

text(ctr, 100, 100);

Text.pde

Loops1a.pde (Page 1)

Loops1a.pde (Page 2)

Relationship of draw() and mousePressed() functions

 A draw() function is needed so the output from the mousePressed() function will be
visible

 This is true even if draw() is empty; otherwise there will be no output to the Processing
output window

Assignment Operators

 Also known as op equals operators

 Assigns an updated value to a variable

Operator Example Explanation

+= ctr += 1; ctr = ctr + 1;

-= ctr -= 17; ctr = ctr - 17;

*= ctr *= 8; ctr = ctr * 8;

/= ctr /= 5; ctr = ctr / 5;

Loops1b.pde (Page 1)

Loops1b.pde (Page 2)

Unary Operators (Page 1)

 Unary operators update variables values by adding (increment operator) or subtracting
(decrement operator) value of 1 to (or from)

Operator Example Explanation

++ ctr++; ctr = ctr + 1; (post)

++ ++ctr; ctr = ctr + 1; (pre)

-- ctr--; ctr = ctr - 1; (post)

-- --ctr; ctr = ctr - 1; (pre)

Unary Operators (Page 2)

 If operator is a prefix, the value is returned after it is increased or decreased:

When the variable ctr = 5:

newVar = ++ctr; // newVar will be 6

 If operator is a suffix, the value is returned before:

When the variable ctr = 5:

newVar = ctr++; // newVar will be 5

 Final value of ctr in both cases will be 6

Loops1c.pde (Page 1)

Loops1c.pde (Page 2)

Loops1d.pde (Page 1)

Loops1d.pde (Page 2)

Variable Scope (Page 1)

 Variables are recognized in the block in which they are declared …

Including loop and conditional blocks

 And all subordinate blocks

 If a variable is declared before the first function (i.e. before the setup() function) or
outside of any function, that variable has global scope

It is recognized inside every function in application

Variable Scope (Page 2)

 In the following example, the variable ctr only is accessible inside the mousePressed()
function

It would not be accessible in any other function:

void mousePressed()

{

int ctr;

for (ctr = 0; ctr < 10; ctr++)

{

println(ctr);

}

}

Loops1e.pde (Page 1)

Loops1e.pde (Page 2)

Variable Scope (Page 3)

 In the following example, the variable ctr only is accessible inside the for block:

for (int ctr = 0; ctr < 10; ctr++)

{

println(ctr);

}

println(ctr);

The last statement would result in a compile error

Loops1f.pde (Page 1)

Loops1f.pde (Page 2)

Loops2.pde (Page 1)

Loops2.pde (Page 2)

MiniQuiz No. 1—
Filename: “Loops3.pde”

 Create an output window 400 by 400 pixels

 In the mousePressed() function draw 1000 circles with diameter of 20 pixels at random
locations

 The RGB colors for each individual circle are random values between 0 and 255

 The transparency for each individual circle is a random value between 100 and 255

 Erase the output window at each mousePressed() click to draw 1000 new circles

LoopsMiniQuiz1.pde (Page 1)

LoopsMiniQuiz1.pde (Page 2)

The while Loop (Page 1)

 Continues to repeat a loop as long as a controlling condition is true (pre-test)

 The variable controlling the condition is updated by logic within the loop

Exact number of loops is usually unknown

 Format:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

The while Loop (Page 2)

 Example:

int ctr = 600;

while (ctr > 0)

{

rect(width / 2, width / 2, ctr, ctr);

ctr -= 10;

}

The while Loop

Remember the if Format …

 Format of the if statement:

if (booleanExpression)

{

Statement(s) to be executed if the booleanExpression is true;

}

 Format of the while statement:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

Comparing for and while

 The for example:

for (ctr = 1; ctr <= 10; ctr++)

{

println(ctr);

}

 The while example :

ctr = 1; // Initialize

while (ctr <= 10) // Boolean test

{

println(ctr);

ctr++; // Increment

}

Loops4.pde (Page 1)

Loops4.pde (Page 2)

Loops5.pde (Page 1)

Loops4.pde (Page 2)

The do while Loop (Page 1)

 Continues to repeat a loop as long as a controlling condition is true

 Performs the test at the conclusion of the execution of each loop (post-test)

 Format:

do

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

while (booleanExpression);

The do while Loop (Page 2)

 Example:

do

{

rect(mySize / 2, mySize / 2, ctr, ctr);

ctr -= 10;

}

while (ctr > 0);

 A do while loop always executes at least one time

Comparing while and do while

 The while Format:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

 The do while Format:

do

{

Statement(s) to be repeated as long as the booleanExpression is true;

} while (booleanExpression);

The do while Loop

The while Loop

Loops6.pde (Page 1)

Loops6.pde (Page 2)

Looping Inside draw() Function

 Effectively any loop structure placed inside the draw() function is a nested loop (an
inner loop inside an outer loop)

 Remember that Processing only updates the output display at the conclusion of each
draw() function

Therefore changes that occur during draw() do not render until each of its iterations
is done executing

Loops7.pde (Page 1)

Loops7.pde (Page 2)

Loops7.pde (Page 3)

Loops7.pde (Page 4)

MiniQuiz No. 2—
Filename: “Loops8.pde”

 Create an output window 200 by 200 pixels

 In draw() use a for loop to draw five circles one on top of the next with diameters 50,
40, 30, 20 and 10 pixels at the x location (y is midpoint of output window)

 In the loop vary (calculate) amount of green fill color from full to less for each circle;
red and blue are zero

 Move the x location across the screen; when left or right margins are encountered,
change direction

 Use a variable to control the output window size so that functioning is the same when
the size changes

Loops8.pde (Page 1)

Loops8.pde (Page 2)

Loops8.pde (Page 3)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

Processing: Looping Statements

CST112

Algorithms

 Procedure for solving problem:

1. Actions to be executed

2. Order in which actions are executed

 The order of the elements of an algorithm are very important …

 Even if the order appears insignificant, errors can have far-reaching results

Research of Bohm and Jacopini

 They proposed that all programs can be written in terms of three control structures:

 The type of instructions that specify the order in which statements in a program is
executed

1. Sequence structure—step by step in order

2. Selection (decision or conditional) structure

3. Repetition (iteration or loop) structure—repeating blocks of statements

Iteration (Loop) Statements

 Provides repeated execution of a block of statements

 The loop continues:

1. A specified number of times (counter-controlled) or …

2. While a condition is met (sentinel-controlled)

 Also called repetition or do while structure

 Meaning do the loop while condition is True

Iteration (Loop) Pattern

 One or more statements in a block are executed repeatedly

 Loop continues while certain condition is true

while (Another rectangle?)

{

Set random fill color;

Set size 10 pixels smaller;

Draw rectangle;

}

The for Loop (Page 1)

 Implements a loop by counting a specific number of iterations (repetitions)

Counter-controlled looping

 Appropriate when exact number of loop repetitions is known

 Format:

for (initialize; booleanExpression; increment)

{

Statement(s) to be repeated;

}

The for Loop (Page 2)

 Example (three expressions in the parentheses):

for (ctr = 0; ctr <= 9; ctr = ctr + 1)

 The initialize component (ctr = 0)

Value assigned to a counter variable when the loop is first encountered in the
program

 The booleanExpression component (ctr <= 9)

Relation condition which is tested to determine if the loop should be entered again

 The increment component (ctr = ctr + 1)

Indicates by what value the counter changes at the beginning of each subsequent
loop

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Strings (Page 1)

 A string is a sequence of characters

 Strings are always defined inside double quotes ("abc")

Alternately characters (type char) are always defined inside single quotes ('a') and
may only contain a single character

Strings (Page 2)

 The class String includes methods for:

Examining individual characters within strings

Comparing strings

Searching strings

Extracting parts of strings

Converting an entire string to uppercase or lowercase

Etc.

The text() Function (Page 1)

 “Draws” data to the screen

The data may be text, a char, an int or a float

 Displays the information specified in the first parameter on the screen in the position
specified by the additional two parameters

 By default the text displays starting from and then to the right of the positions
coordinates

 The fill() function controls the color of the text (default always is white)

The text() Function (Page 2)

 Format:

text(theData, xCoordinate, yCoordinate);

 Examples:

text("Hello", mouseX, mouseY);

text(ctr, 100, 100);

Text.pde

Loops1a.pde (Page 1)

Loops1a.pde (Page 2)

Relationship of draw() and mousePressed() functions

 A draw() function is needed so the output from the mousePressed() function will be
visible

 This is true even if draw() is empty; otherwise there will be no output to the Processing
output window

Assignment Operators

 Also known as op equals operators

 Assigns an updated value to a variable

Operator Example Explanation

+= ctr += 1; ctr = ctr + 1;

-= ctr -= 17; ctr = ctr - 17;

*= ctr *= 8; ctr = ctr * 8;

/= ctr /= 5; ctr = ctr / 5;

Loops1b.pde (Page 1)

Loops1b.pde (Page 2)

Unary Operators (Page 1)

 Unary operators update variables values by adding (increment operator) or subtracting
(decrement operator) value of 1 to (or from)

Operator Example Explanation

++ ctr++; ctr = ctr + 1; (post)

++ ++ctr; ctr = ctr + 1; (pre)

-- ctr--; ctr = ctr - 1; (post)

-- --ctr; ctr = ctr - 1; (pre)

Unary Operators (Page 2)

 If operator is a prefix, the value is returned after it is increased or decreased:

When the variable ctr = 5:

newVar = ++ctr; // newVar will be 6

 If operator is a suffix, the value is returned before:

When the variable ctr = 5:

newVar = ctr++; // newVar will be 5

 Final value of ctr in both cases will be 6

Loops1c.pde (Page 1)

Loops1c.pde (Page 2)

Loops1d.pde (Page 1)

Loops1d.pde (Page 2)

Variable Scope (Page 1)

 Variables are recognized in the block in which they are declared …

Including loop and conditional blocks

 And all subordinate blocks

 If a variable is declared before the first function (i.e. before the setup() function) or
outside of any function, that variable has global scope

It is recognized inside every function in application

Variable Scope (Page 2)

 In the following example, the variable ctr only is accessible inside the mousePressed()
function

It would not be accessible in any other function:

void mousePressed()

{

int ctr;

for (ctr = 0; ctr < 10; ctr++)

{

println(ctr);

}

}

Loops1e.pde (Page 1)

Loops1e.pde (Page 2)

Variable Scope (Page 3)

 In the following example, the variable ctr only is accessible inside the for block:

for (int ctr = 0; ctr < 10; ctr++)

{

println(ctr);

}

println(ctr);

The last statement would result in a compile error

Loops1f.pde (Page 1)

Loops1f.pde (Page 2)

Loops2.pde (Page 1)

Loops2.pde (Page 2)

MiniQuiz No. 1—
Filename: “Loops3.pde”

 Create an output window 400 by 400 pixels

 In the mousePressed() function draw 1000 circles with diameter of 20 pixels at random
locations

 The RGB colors for each individual circle are random values between 0 and 255

 The transparency for each individual circle is a random value between 100 and 255

 Erase the output window at each mousePressed() click to draw 1000 new circles

LoopsMiniQuiz1.pde (Page 1)

LoopsMiniQuiz1.pde (Page 2)

The while Loop (Page 1)

 Continues to repeat a loop as long as a controlling condition is true (pre-test)

 The variable controlling the condition is updated by logic within the loop

Exact number of loops is usually unknown

 Format:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

The while Loop (Page 2)

 Example:

int ctr = 600;

while (ctr > 0)

{

rect(width / 2, width / 2, ctr, ctr);

ctr -= 10;

}

The while Loop

Remember the if Format …

 Format of the if statement:

if (booleanExpression)

{

Statement(s) to be executed if the booleanExpression is true;

}

 Format of the while statement:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

Comparing for and while

 The for example:

for (ctr = 1; ctr <= 10; ctr++)

{

println(ctr);

}

 The while example :

ctr = 1; // Initialize

while (ctr <= 10) // Boolean test

{

println(ctr);

ctr++; // Increment

}

Loops4.pde (Page 1)

Loops4.pde (Page 2)

Loops5.pde (Page 1)

Loops4.pde (Page 2)

The do while Loop (Page 1)

 Continues to repeat a loop as long as a controlling condition is true

 Performs the test at the conclusion of the execution of each loop (post-test)

 Format:

do

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

while (booleanExpression);

The do while Loop (Page 2)

 Example:

do

{

rect(mySize / 2, mySize / 2, ctr, ctr);

ctr -= 10;

}

while (ctr > 0);

 A do while loop always executes at least one time

Comparing while and do while

 The while Format:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

 The do while Format:

do

{

Statement(s) to be repeated as long as the booleanExpression is true;

} while (booleanExpression);

The do while Loop

The while Loop

Loops6.pde (Page 1)

Loops6.pde (Page 2)

Looping Inside draw() Function

 Effectively any loop structure placed inside the draw() function is a nested loop (an
inner loop inside an outer loop)

 Remember that Processing only updates the output display at the conclusion of each
draw() function

Therefore changes that occur during draw() do not render until each of its iterations
is done executing

Loops7.pde (Page 1)

Loops7.pde (Page 2)

Loops7.pde (Page 3)

Loops7.pde (Page 4)

MiniQuiz No. 2—
Filename: “Loops8.pde”

 Create an output window 200 by 200 pixels

 In draw() use a for loop to draw five circles one on top of the next with diameters 50,
40, 30, 20 and 10 pixels at the x location (y is midpoint of output window)

 In the loop vary (calculate) amount of green fill color from full to less for each circle;
red and blue are zero

 Move the x location across the screen; when left or right margins are encountered,
change direction

 Use a variable to control the output window size so that functioning is the same when
the size changes

Loops8.pde (Page 1)

Loops8.pde (Page 2)

Loops8.pde (Page 3)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

Processing: Looping Statements

CST112

Algorithms

 Procedure for solving problem:

1. Actions to be executed

2. Order in which actions are executed

 The order of the elements of an algorithm are very important …

 Even if the order appears insignificant, errors can have far-reaching results

Research of Bohm and Jacopini

 They proposed that all programs can be written in terms of three control structures:

 The type of instructions that specify the order in which statements in a program is
executed

1. Sequence structure—step by step in order

2. Selection (decision or conditional) structure

3. Repetition (iteration or loop) structure—repeating blocks of statements

Iteration (Loop) Statements

 Provides repeated execution of a block of statements

 The loop continues:

1. A specified number of times (counter-controlled) or …

2. While a condition is met (sentinel-controlled)

 Also called repetition or do while structure

 Meaning do the loop while condition is True

Iteration (Loop) Pattern

 One or more statements in a block are executed repeatedly

 Loop continues while certain condition is true

while (Another rectangle?)

{

Set random fill color;

Set size 10 pixels smaller;

Draw rectangle;

}

The for Loop (Page 1)

 Implements a loop by counting a specific number of iterations (repetitions)

Counter-controlled looping

 Appropriate when exact number of loop repetitions is known

 Format:

for (initialize; booleanExpression; increment)

{

Statement(s) to be repeated;

}

The for Loop (Page 2)

 Example (three expressions in the parentheses):

for (ctr = 0; ctr <= 9; ctr = ctr + 1)

 The initialize component (ctr = 0)

Value assigned to a counter variable when the loop is first encountered in the
program

 The booleanExpression component (ctr <= 9)

Relation condition which is tested to determine if the loop should be entered again

 The increment component (ctr = ctr + 1)

Indicates by what value the counter changes at the beginning of each subsequent
loop

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Loops1.pde

Strings (Page 1)

 A string is a sequence of characters

 Strings are always defined inside double quotes ("abc")

Alternately characters (type char) are always defined inside single quotes ('a') and
may only contain a single character

Strings (Page 2)

 The class String includes methods for:

Examining individual characters within strings

Comparing strings

Searching strings

Extracting parts of strings

Converting an entire string to uppercase or lowercase

Etc.

The text() Function (Page 1)

 “Draws” data to the screen

The data may be text, a char, an int or a float

 Displays the information specified in the first parameter on the screen in the position
specified by the additional two parameters

 By default the text displays starting from and then to the right of the positions
coordinates

 The fill() function controls the color of the text (default always is white)

The text() Function (Page 2)

 Format:

text(theData, xCoordinate, yCoordinate);

 Examples:

text("Hello", mouseX, mouseY);

text(ctr, 100, 100);

Text.pde

Loops1a.pde (Page 1)

Loops1a.pde (Page 2)

Relationship of draw() and mousePressed() functions

 A draw() function is needed so the output from the mousePressed() function will be
visible

 This is true even if draw() is empty; otherwise there will be no output to the Processing
output window

Assignment Operators

 Also known as op equals operators

 Assigns an updated value to a variable

Operator Example Explanation

+= ctr += 1; ctr = ctr + 1;

-= ctr -= 17; ctr = ctr - 17;

*= ctr *= 8; ctr = ctr * 8;

/= ctr /= 5; ctr = ctr / 5;

Loops1b.pde (Page 1)

Loops1b.pde (Page 2)

Unary Operators (Page 1)

 Unary operators update variables values by adding (increment operator) or subtracting
(decrement operator) value of 1 to (or from)

Operator Example Explanation

++ ctr++; ctr = ctr + 1; (post)

++ ++ctr; ctr = ctr + 1; (pre)

-- ctr--; ctr = ctr - 1; (post)

-- --ctr; ctr = ctr - 1; (pre)

Unary Operators (Page 2)

 If operator is a prefix, the value is returned after it is increased or decreased:

When the variable ctr = 5:

newVar = ++ctr; // newVar will be 6

 If operator is a suffix, the value is returned before:

When the variable ctr = 5:

newVar = ctr++; // newVar will be 5

 Final value of ctr in both cases will be 6

Loops1c.pde (Page 1)

Loops1c.pde (Page 2)

Loops1d.pde (Page 1)

Loops1d.pde (Page 2)

Variable Scope (Page 1)

 Variables are recognized in the block in which they are declared …

Including loop and conditional blocks

 And all subordinate blocks

 If a variable is declared before the first function (i.e. before the setup() function) or
outside of any function, that variable has global scope

It is recognized inside every function in application

Variable Scope (Page 2)

 In the following example, the variable ctr only is accessible inside the mousePressed()
function

It would not be accessible in any other function:

void mousePressed()

{

int ctr;

for (ctr = 0; ctr < 10; ctr++)

{

println(ctr);

}

}

Loops1e.pde (Page 1)

Loops1e.pde (Page 2)

Variable Scope (Page 3)

 In the following example, the variable ctr only is accessible inside the for block:

for (int ctr = 0; ctr < 10; ctr++)

{

println(ctr);

}

println(ctr);

The last statement would result in a compile error

Loops1f.pde (Page 1)

Loops1f.pde (Page 2)

Loops2.pde (Page 1)

Loops2.pde (Page 2)

MiniQuiz No. 1—
Filename: “Loops3.pde”

 Create an output window 400 by 400 pixels

 In the mousePressed() function draw 1000 circles with diameter of 20 pixels at random
locations

 The RGB colors for each individual circle are random values between 0 and 255

 The transparency for each individual circle is a random value between 100 and 255

 Erase the output window at each mousePressed() click to draw 1000 new circles

LoopsMiniQuiz1.pde (Page 1)

LoopsMiniQuiz1.pde (Page 2)

The while Loop (Page 1)

 Continues to repeat a loop as long as a controlling condition is true (pre-test)

 The variable controlling the condition is updated by logic within the loop

Exact number of loops is usually unknown

 Format:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

The while Loop (Page 2)

 Example:

int ctr = 600;

while (ctr > 0)

{

rect(width / 2, width / 2, ctr, ctr);

ctr -= 10;

}

The while Loop

Remember the if Format …

 Format of the if statement:

if (booleanExpression)

{

Statement(s) to be executed if the booleanExpression is true;

}

 Format of the while statement:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

Comparing for and while

 The for example:

for (ctr = 1; ctr <= 10; ctr++)

{

println(ctr);

}

 The while example :

ctr = 1; // Initialize

while (ctr <= 10) // Boolean test

{

println(ctr);

ctr++; // Increment

}

Loops4.pde (Page 1)

Loops4.pde (Page 2)

Loops5.pde (Page 1)

Loops4.pde (Page 2)

The do while Loop (Page 1)

 Continues to repeat a loop as long as a controlling condition is true

 Performs the test at the conclusion of the execution of each loop (post-test)

 Format:

do

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

while (booleanExpression);

The do while Loop (Page 2)

 Example:

do

{

rect(mySize / 2, mySize / 2, ctr, ctr);

ctr -= 10;

}

while (ctr > 0);

 A do while loop always executes at least one time

Comparing while and do while

 The while Format:

while (booleanExpression)

{

Statement(s) to be repeated as long as the booleanExpression is true;

}

 The do while Format:

do

{

Statement(s) to be repeated as long as the booleanExpression is true;

} while (booleanExpression);

The do while Loop

The while Loop

Loops6.pde (Page 1)

Loops6.pde (Page 2)

Looping Inside draw() Function

 Effectively any loop structure placed inside the draw() function is a nested loop (an
inner loop inside an outer loop)

 Remember that Processing only updates the output display at the conclusion of each
draw() function

Therefore changes that occur during draw() do not render until each of its iterations
is done executing

Loops7.pde (Page 1)

Loops7.pde (Page 2)

Loops7.pde (Page 3)

Loops7.pde (Page 4)

MiniQuiz No. 2—
Filename: “Loops8.pde”

 Create an output window 200 by 200 pixels

 In draw() use a for loop to draw five circles one on top of the next with diameters 50,
40, 30, 20 and 10 pixels at the x location (y is midpoint of output window)

 In the loop vary (calculate) amount of green fill color from full to less for each circle;
red and blue are zero

 Move the x location across the screen; when left or right margins are encountered,
change direction

 Use a variable to control the output window size so that functioning is the same when
the size changes

Loops8.pde (Page 1)

Loops8.pde (Page 2)

Loops8.pde (Page 3)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

