CST112—Understanding Images and Pixels Page 1

1 Processing: Understanding Images & Pixels
CST112

2 What is Processing?
P Processing is a language that was (still is being) developed by Ben Fry (UCLA) and
Casey Reas (MIT/Broad Institute)
Pt is a “shell” built around Java programming language
P Simplifies programming of visual programs
P Yields immediate graphical output
P Very suitable language for beginners learning how program

3 Programming Approaches (Page 1)
P Traditional command line output:
1. Write your code as text
2. Code produces output on the command line
3. Enter text on the command line to interact with the program

4 Programming Approaches (Page 2)
P Learning programming with Processing:
1. Write your code as text
2. Code produces visuals in a window
3. User interacts with those visuals via the mouse (and more ...)

5 Coordinate Systems
P In geometry, a system which uses numbers (the coordinates) to determine position
of a point or other geometric element
P Order of coordinates is significant; sometimes are identified by a letter, as in the "x-
coordinate”
P Use of coordinate systems allow problems in geometry to be translated into
problems about numbers and vice versa

6 Number Line
P Simplest example of a coordinate system is identification of points on a line with real
numbers using number line
P In this system, an arbitrary point O (the origin) is chosen on a given line (usually
Zero)

P Coordinate of a point P is defined as the signed distance from O to P, taken as a
positive or negative value

7 Cartesian Coordinate System
P A Cartesian coordinate system is a 2-dimensional system specifying a point in a
plane by a pair of numerical coordinates
P Coordinates are the signed distances from the point to two fixed perpendicular
directed lines, measured in the same unit of length



CST112—Understanding Images and Pixels Page 2

11

14

16

17

18

P Each reference line is called a coordinate axis or just axis of the system, and the point
where they meet is its origin
P The x-axis and the y-axis

>

Pixels

P A pixel (or picture element) is a single “point” of light on a computer screen
P Smallest addressable screen element of picture that can be controlled

P Each pixel has its own address—corresponds to its coordinates

» Arranged normally in a two-dimensional grid, and often are represented using dots
or squares

Pixel Coordinate System
P The pixel coordinate system defines the origin as the upper-left corner of the
computer screen

PE.g. the x- (horizontal) and y- (vertical) coordinate values zero (0, 0) both are at
the upper-left corner

P Pixel centers are offset by (0.5, 0.5) from integer locations

Draw a Point (Page 1)

»To draw a point (a dot) that fills exactly one pixel in a pixel coordinate system:
P The x-coordinate is specified as the first value
P The y-coordinate is specified as the second value

P For example:
P Draw the point at (20, 20)

Draw a Point (Page 2)

P The point “function” in Processing is used to draw a point inside the “output
window”
» The default window size is 100 by 100 pixels

P Format:
point(x-coord, y-coord);

Draw a Point (Page 3)

P Example:
point(20, 20);
P The two "arguments” (20, 20) are the x-coordinate and y-coordinate
P All Processing (and Java) statements end with a semicolon (;)

Draw a Line (Page 1)
P To draw a line in a pixel coordinate system:
P The start of the line (point A) is specified as one set of coordinates
P The end the line (point B) is specified as a second set of coordinates
P For example:



CST112—Understanding Images and Pixels

20

21

22

24

25

26

27

P Start the line at (10, 25)—point A
»End the line at (75, 100)—point B

Draw a Line (Page 2)
P The line function in Processing is used to draw a line inside the output window
»Format:

line(x-PointA, y-PointA, x-PointB, y-PointB);

Draw a Line (Page 3)

P Example:
line(10, 25, 75, 100);
PFirst two arguments (10, 25) are the x- and y-coordinates of point A
P Last two arguments (75, 100) are x- and y-coordinates of point B

Draw a Rectangle (Page 1)
»To draw a rectangle specify:
P The x- and y-coordinates of its upper-left corner
P Its width and height
P For example:
P Specify the upper left corner (20, 10)—its x- and y-coordinates
P Specify its width and height (60, 40)

Draw a Rectangle (Page 2)
P The rect function in Processing is used to draw a rectangle inside the output window
P Format:

rect(x-UpperLeft, y-Upperleft, width, height);

Draw a Rectangle (Page 3)

P Example:
rect(20, 10, 60, 40);
PFirst two arguments (20, 10) are x- and y-coordinates of the upper-left corner
P Last two arguments (60, 40) are width and height

The rectMode Function (Page 1)
P There are two other formats for drawing rectangles:
P The x- and y-coordinates specify the centerpoint of the rectangle in addition to
the width and height
rect(x-Center, y-Center, width, height);
P The two sets of x- and y-coordinates specify the upper-left and lower-right corners
of the rectangle

rect(x-UpperLeft, y-UpperlLeft, x-LowerRight, y-LowerRight);

The rectMode Function (Page 2)
P Select the format by assigning one of three values using the rectMode function prior

Page 3



CST112—Understanding Images and Pixels

29

31

32

34

35

36

to calling the rect function:

rectMode(CORNER); — rect function arguments specify upper-left corner, width,
and height of the rectangle (the default)

rectMode(CENTER); — rect arguments specify the centerpoint, width, and height of
the rectangle

rectMode(CORNERS); — rect arguments specify upper-left and lower-right corners
of the rectangle

The rectMode Function (Page 3)
P To specify the centerpoint, width, and height:
rectMode(CENTER);
rect(50, 30, 60, 40);
The rectMode Function (Page 4)
P To specify the upper-left and lower-right corners:
rectMode(CORNERS);

rect(20, 10, 80, 50);

Draw a Square (Page 1)
P To draw a square specify:
P The x- and y-coordinates of its upper-left corner
P Its width (same as its height which is not specified)
P For example:
P Specify the upper left corner (20, 10)—its x- and y-coordinates
P Specify its width (40)

Draw a Square (Page 2)
P The square function in Processing is used to draw a square inside the output window
P Format:

square(x-Upperleft, y-UpperlLeft, width);

Draw a Square (Page 3)

P Example:
square(20, 10, 40);
PFirst two arguments (20, 10) are x- and y- coordinates of the upper-left corner
P Last argument (40) is the width

Draw a Square (Page 4)
P The rectMode function also may be applied to squares prior to calling the square
function but only to change the origin to centerpoint:
rectMode(CORNER); — square function arguments specify upper-left corner and
width of the square (the default)

rectMode(CENTER); — square function arguments specify the centerpoint and width
of the square

Page 4



CST112—Understanding Images and Pixels Page 5

37

39

40

41

42

44

rectMode{CORNERS): does not apply

Draw an Ellipse (Page 1)
P To draw an ellipse specify:
P The x- and y-coordinates of its centerpoint
P Its width and height
P For example:
P Specify the centerpoint (65, 50)—its x- and y-coordinates
P Specify its width and height (50, 60)

Draw an Ellipse (Page 2)

P The ellipse function in Processing is used to draw an ellipse inside the output
window

P Format:
ellipse(x-CoordCenter, y-CoordCenter, width, height);

Draw an Ellipse (Page 3)

P Example:
ellipse(65, 50, 50, 60);
P First two arguments (65, 50) are x- and y-coordinates of the centerpoint
P Last two arguments (50, 60) are the width and height

The ellipseMode Function (Page 1)
P There are two other formats for drawing ellipses:
P The x- and y- coordinates specify the upper-left corner of the bounding box in
which the ellipse is drawn
ellipse(x-UpperlLeft, y-Upperleft, width, height);
P The two sets of x- and y-coordinates specify the upper-left and lower-right
corners of the bounding box in which the ellipse is drawn
ellipse(x-UpperlLeft, y-Upperleft, x-LowerRight, y-LowerRight);

The ellipseMode Function (Page 2)
P Select the format by assigning one of three values using the ellipseMode function
prior to calling the ellipse function:
ellipseMode(CENTER); — ellipse function arguments specify the centerpoint, width,
and height of the ellipse (the default)
ellipseMode(CORNER); — ellipse function arguments specify upper-left corner,
width, and height of the ellipse
ellipseMode(CORNERS); — ellipse function arguments specify upper-left and lower-

right corners of the ellipse
The ellipseMode Function (Page 3)

P To specify the upper-left corner, width, and height:
ellipseMode(CORNER);



CST112—Understanding Images and Pixels

46

47

49

50

51

55

56

ellipse(40, 20, 50, 60);

The ellipseMode Function (Page 4)
P To specify the upper-left and lower-right corners:
ellipseMode(CORNERS);
ellipse(40, 20, 90, 80);

Draw a Circle (Page 1)
P To draw a circle specify:

P The x- and y-coordinates of its centerpoint

P Its diameter (the width and height are the same but not specified)
P For example:

P Specify the centerpoint (60, 50)—its x- and y-coordinates

P Specify its diameter (50)

Draw a Circle (Page 2)
P The circle function in Processing is used to draw a circle inside the output window
» Format:

circle(x-CoordCenter, y-CoordCenter, diameter);

Draw a Circle (Page 3)

P Example:
circle(60, 50, 50);
P First two arguments (60, 50) are x- and y-coordinates of the centerpoint
P Last argument (50) is the diameter

Draw a Circle (Page 4)
P The ellipseMode function also may be applied to circles prior to calling the circle
function but only to change the origin to upper-left corner:

ellipseMode(CENTER); — circle function arguments specify centerpoint and
diameter of the circle (the default)

ellipseMode(CORNER); — circle function arguments specify upper-left corner and
diameter of the circle

ellipseMode(CORNERS): does not apply

Greyscale Color

P Greyscale is a shade of gray ranging from black (all) to white (none)

» Measured as a numeric value from zero (0) which is black to 255 which is white:
»Black (0) = 0% brightness (aka 100% greyscale)
P White (255) = 100% brightness (aka 0% greyscale)
P All other values above zero and below 255 are some shade of gray

Bits and Bytes (Page 1)

P A bit (literally meaning a binary digit) is the basic unit of information and storage in

Page 6



CST112—Understanding Images and Pixels

57

58

59

60

61

computing (memory and storage)

P In computer memory, a bit is a “switch” that can be either:
P “On"—represented by the digit 1 in binary
P "Off"—represented by the digit 0 in binary

Bits and Bytes (Page 2)
P Since bits only are able to represent two pieces of information, they usually are
grouped into larger organizational units
P The smallest “meaningful” unit of computer memory is a byte
P A byte consists of eight bits
»Used in binary to represent all numerical values from zero (0) to 255

Bits and Bytes (Page 3)
»The numbers between zero (0) and 255 represented as eight-digit binary numbers:
»0—00000000
»1—00000001
»2—00000010
»3—00000011

»253—11111101
»254—11111110
»255—11111111

The background Function (Page 1)
P Sets the background grayscale (or color) of the output window where the shapes are
drawn
P Format:
background(int);
P The int argument is an integer in the range 0-255 that represents black, or white,
or a shade of gray

The background Function (Page 2)
»Example:

background(255);

P Background will be white (255)

The fill Function (Page 1
P Sets the interior fill grayscale (or color) of a shape such as a rectangle or ellipse
P The default fill grayscale is white
P Format:
fill(int);
P The int argument is an integer in the range 0-255 that represents black, or white,
or a shade of gray

Page 7



CST112—Understanding Images and Pixels Page 8

62

63

64

65

66

69

70

The fill Function (Page 2)
P Example:

fill(127);

P Interior fill will be gray (127)

The stroke Function (Page 1)
P The stroke function sets the outer border (outline) grayscale (or color) of a shape
such as a rectangle or ellipse
PLines and points only have a stoke—no fill
P The default stoke color is black
P Format:
stroke(int);

P The int argument is an integer in the range 0-255 that represents black, or white,
or a shade of gray

The stroke Function (Page 2)
P Example:
stroke(200);
P Stroke (outer border, line, or point) will be light gray (200)

The nofFill Function

P The noFill function draws a shape (e.g. rectangle, ellipse, etc.) with an outline border,
but no filled interior

» Format:
noFill();

The noStroke Function

P The noStroke function draws a shape (e.g. rectangle, ellipse, etc.) with a filled interior,
but no outline border

» Format:
noStroke();

RGB Color (Page 1)

»RGB (Red—Green—Blue) color describes “colored light” viewed coming from its
source, e.g. the colors of a video display (monitor)

P Called an additive color system, because light is added from the primary colors (red,
green and blue) to make new colors

RGB Color (Page 2)

P Values for red, green, and blue are usually specified using a scale from zero (0) to
255

P Use three bytes, one byte each (per pixel) for the red, green and blue values, in the
range 0-255

»Higher numbers mean more of each color of light; lower numbers mean less of



CST112—Understanding Images and Pixels

the color of light
P This method provides for over 16 million colors

71 RGB Color (Page 3)
P Examples:

P Secondary colors:
P Yellow = Red(255) + Green(255) + Blue(0)
»Cyan = Red(0) + Green(255) + Blue(255)
»Magenta = Red(255) + Green(0) + Blue(255)

P All (or none) colors:
»White = Red(255) + Green(255) + Blue(255)
»Black = Red(0) + Green(0) + Blue(0)

72 RGB Color (Page 4)
P You can experiment with RGB by selecting the “Color Selector” from the Processing
“Tools” menu

P Also try websites with RGB color selector tools

73 The background Function (Revisited—Page 1)
P An alternative version of the background function sets the background color of the
window
P Format:

background(redint, greenint, bluelnt);

P The arguments are integers in the range 0-255 that represent amount of red,
green and blue in the color

74 The background Function (Revisited—Page 2)

P Example:
background(255, 255, 0);
»Background color will be yellow (255, 255, 0)

75 The fill Function (Revisited—Page 1)
P An alternative version of the fill function sets the interior fill color of a shape
P Format:

fill(redint, greenint, bluelnt);
P The arguments are integers in the range 0-255 that represent amount of red,
green and blue in the color

76 The fill Function (Revisited—Page 2)

P Example:
fill(0, 255, 255);
circle(50, 50, 100);
»Fill color will be cyan (0, 255, 255)

77 The stroke Function (Revisited—Page 1)

Page 9



CST112—Understanding Images and Pixels Page 10

P An alternative version of the stroke function sets the outline border color of a shape,
or the color of a line or point
P Format:
stroke(redint, greenint, bluelnt);
P The arguments are integers in the range 0-255 that represent amount of red,
green and blue in the color

78 The stroke Function (Revisited—Page 2)
P Example:
stroke(255, 0, 255);
circle(50, 50, 100);
P> Stroke color will be magenta (255, 0, 255)

82 Color Transparency
P The term color transparency used at its simplest means there is “full transparency”,
e.g. completely invisible
»More complex is “partial transparency”, where an illusion is achieved that the graphic
is partially transparent in the same way as colored glass

83 The fill Function (Revisited Again—Page 1)
P An alternative version of the fill function sets the interior fill color transparency of a
shape
» Format:

fill(redint, greenint, bluelnt, transparencyint);
P Fourth argument is an integer that represents amount of opacity
» Opacity values range:

»From zero (0), completely transparent (0% opaque)

P To 255, no transparency (100% opaque)

84 The fill Function (Revisited Again—Page 2)
P Example:
fill(0, 255, 255, 127);
P Fill will be cyan with 50% opacity (0, 255, 255, 127)

86 The colorMode Function (Page 1)
P The colorMode sets:

P Color mode for the way color data is interpreted by Processing, either RGB which
is the default or HSB (Hue/Saturation/Brightness)

P Customized ranges rather than the default zero (0) to 255

87 The colorMode Function (Page 2)
» Formats:
colorMode(RGB/HSB, rangeForAll);
»Color mode is either RGB or HSB



CST112—Understanding Images and Pixels

88

91

P The rangeForAll specifies the high end for all elements as the same
colorMode(RGB/HSB, redRange, greenRange, blueRange, transparencyRange);
P Sets high end for each element separately

The colorMode Function (Page 3)

P Examples:
colorMode(RGB, 100);
»Uses RGB mode with ranges from zero (0) to 100 (percentages)
colorMode(RGB, 255, 255, 255, 100);

P Uses RGB mode with RGB ranges as default, but sets the transparency from zero
(0) to 100 (as percentages)

The colorMode Function (Page 3)
»Examples (con.):
colorMode(HSB, 100);
»Uses HSB mode (Hue/Saturation/Brightness) ranges from zero (0) to 99
(percentages)
»Hue by default is measured in degrees (0-359)
P Describing colors using hue, saturation and brightness (light) (HSL) is a
convenient way to organize differences in colors as perceived by people; human
perception sees colors in these ways and not as triplets of numbers

Page 11



