
CST141—Abstract Classes and Interfaces Page 1

Abstract Classes and Interfaces

CST141

Late Binding (Page 1)

Programmers should create systems (applications) that are easily extensible

– Capable of being extended—easy to add to later

Superclasses are designed as more general:

– Able to process existing as well as new subclasses

– Classes that are added later should not require modification to the general part of
the program (the superclass)

Late Binding (Page 2)

Late binding—a method from one class is not tied to method that calls it from another
class until run-time (when it is instantiated)

– Also called dynamic binding

– The opposite of early binding in which the methods of the two classes are compiled
together

Late binding makes it possible to add new classes to the hierarchy even after the base
class compiles

A Late Binding Example

Late Binding (Page 3)

Consider the Shape class example:

– Shape has:

•An attribute point where the shape starts to draw

•A method printIt() that “positions” a shape when drawn by calling a method
named position()

– Classes Circle and Rectangle both extend Shape

•Circle has attribute radius; Rectangle has attributes length and width

•Circle and radius have individual methods named draw() that “draw” the shapes,
both of which are called by the printIt() method of class Shape

A Late Binding Example

Late Binding (Page 4)

Consider the Shape class example (con):

– With early binding, if new class Triangle is created after Shape is compiled, method
draw() of either Circle or Rectangle will have been bound previously to printIt()

– With late binding (essentially the equivalent of polymorphism), method draw() of
Triangle (or Circle or Rectangle) correctly binds to printIt() at run-time

– Java uses late binding exclusively

A Late Binding Example

The Keyword abstract (Page 1)

Classes that are declared to be abstract cannot be instantiated …

– No objects may be created from it

This is true for a superclass that only has the function of supporting subclasses …

– Such classes are called abstract superclasses

The Keyword abstract (Page 2)

Example:

public abstract class Shape extends Object

Classes that may instantiate objects are called concrete classes

– E.g. the Circle, Rectangle and Triangle classes

Declaring abstract Methods (Page 1)

A method may be declared in a superclass declaration as abstract

As such the abstract method only may exist in an abstract class (or an interface)

Declaring abstract Methods (Page 2)

The declaration is only a reference since:

– It contains no statements

– Requires implementation of the abstract method in all of its subclasses

•So that required subclass methods are not forgotten

– Any call to the local abstract method is overridden because it will be handled by
methods of same name in the subclasses (uses redirection)

• In fact this is the only way that a superclass can call methods of its direct
subclass

Declaring abstract Methods (Page 3)

Format:

public abstract type/void methodName([parameterList]);

– The parameterList must match in number of variables and type the implemented
method

– Methods that are abstract may be overloaded

Example:

public abstract void draw();

– Note the placement of the semicolon (;) at end of the method header (signature)

Shape.java (Page 1)

Shape.java (Page 2)

Shape.java (Page 3)

Shape.java (Page 4)

The Keyword final

Used to indicate that the value of an identifier may not change after it has been
declared and initialized

– Often used for defining a constant

Example:

double final CREDITS = 7;

Declaring a Class as final

If a class is declared to be final, it must be the bottom class in an inheritance
hierarchy

– It may not have any subclasses

Example:

public final class Circle extends Shape

Circle.java (Page 1)

Circle.java (Page 2)

Circle.java (Page 3)

Circle.java (Page 4)

Rectangle.java (Page 1)

Rectangle.java (Page 2)

Rectangle.java (Page 3)

Rectangle.java (Page 4)

Rectangle.java (Page 5)

Rectangle.java (Page 6)

Shapes1.java

Shapes2.java

MiniQuiz No. 1—Part 1

Create a new final class Triangle that extends Shape with three instance variables
side1, side2 and side3

Write two constructors:

1. One passes default values zero (0) to the second constructor

2. The Triangle(int, int, int, int) constructor passes the point where it will draw to the
Shape superclass constructor and sets the three sides of the triangle

Write a set method for each data field which validates that a side is zero (0) or
greater

Write a get method for each data field

Write a method draw() that overrides the abstract method in Shape and that prints
the three sides of the triangle to the terminal window

MiniQuiz No. 1—Part 2

Update the “Shapes1.java” class file to instantiate an object t from the Triangle class
and then call its printIt() method

Update the “Shapes2.java” class file to instantiate a third element to the s array from
the Triangle constructor

A Student Hierarchy to Calculate Grades and Tuition

Student.java (Page 1)

Student.java (Page 2)

Student.java (Page 3)

Student.java (Page 4)

Student.java (Page 5)

Student.java (Page 6)

Student.java (Page 7)

Student.java (Page 8)

FemaleStudent.java

SuffolkResident.java (Page 1)

SuffolkResident.java (Page 2)

SuffolkResident.java (Page 3)

SuffolkResident.java (Page 4)

MaleSuffolkResident.java

NassauResident.java (Page 1)

NassauResident.java (Page 2)

NassauResident.java (Page 3)

NassauResident.java (Page 4)

NassauResident.java (Page 5)

NonResident.java (Page 1)

NonResident.java (Page 2)

NonResident.java (Page 3)

NonResident.java (Page 4)

NonResident.java (Page 5)

NonResident.java (Page 6)

AbstractsAndInterfaces1.java

ValidState.java (Page 1)

ValidState.java (Page 2)

ValidState.java (Page 3)

ValidState.java (Page 4)

SeniorCitizen.java (Page 1)

SeniorCitizen.java (Page 2)

SeniorCitizen.java (Page 3)

SeniorCitizen.java (Page 4)

AbstractsAndInterfaces1.java (Page 1)

AbstractsAndInterfaces1.java (Page 1)

Downcasting and Polymorphic Behavior (Page 1)

Casting a superclass reference to a subclass reference

Technique makes it possible to reference a subclass method from an object
instantiated from its superclass

Accomplished by casting the superclass object (superclass is the type) to the subclass
type (subclass is the constructor)

Downcasting and Polymorphic Behavior (Page 2)

Format:

SuperClassName object = new SubClassConstructor([args]);

– Possible only because the subclass is derived (extends from) from the superclass

Downcasting and Polymorphic Behavior (Page 3)

Example:

Student s = new SuffolkResident("Sally", "Walters", "Z", 7);

…

JOptionPane.showMessageDialog(null, s.getTuition())

– Calls getTuition() method of class SuffolkResident (not that of Student)

Subtyping1.java

Subtyping2.java (Page 1)

Subtyping2.java (Page 2)

Interfaces

Contains abstract method definitions needed by several classes and perhaps within
several class hierarchies

– An alternate to declaring them in a superclass

If a method is declared in an interface, all classes that “implement” the interface must
declare a method with the same signature

The Keyword interface

Used to declare an interface (replaces the keyword class in the header signature)

– As with a class name, the name of the interface must be identical to the “*.java”
filename

Example:

public interface Tuition

{

public abstract int getTuition();

}

– Filename for the above must be “Tuition.java”

Implementing Interfaces

Interfaces are not inherited in subclasses but rather they are implemented

Classes may implement several interfaces …

– Sort of like multiple inheritance …

– Unlike subclasses which may inherit (extend) from only one superclass

The Keyword implements

Used to implement an interface

Format:

public class ClassName [extends SuperClassName] implements InterfaceName1[,
InterfaceName2, …]

{ …

Example:

public class SuffolkResident extends Student implements Tuition

{ …

Declaring Constants in Interfaces (Page 1)

Besides method references, the only other elements that may be declared in
interfaces are constants

The constants can be accessed by all classes in which the interface is implemented

The constant identifier must be:

– Declared as final and may additionally be declared as static (they are static by
default)

– Assigned a value which may not change

Declaring Constants in Interfaces (Page 2)

Format:

[public] [static] [final] type CONSTANT_NAME = value;

Example:

public interface Tuition

{

static final int PT_TUITION = 105;

static final int FT_TUITION = 1175;

}

Interface Programming Practice (Page 1)

According to the “Java Language Specification”, in standard practice within an
interface:

– Methods are declared without the keywords public and abstract because these
specifications are redundant

– Constants are declared without the keywords public, static and final because they
also are redundant

Interface Programming Practice (Page 2)

Example:

public interface Tuition

{

int getTuition();

int PT_TUITION = 105;

int FT_TUITION = 1175;

}

Tuition.java

Mini-Quiz No. 2 (Part 1)

Find the values for “part-time” and “full-time” tuition in method getTuition() of
SuffolkResident, NassauResident, and NonResident classes

Substitute the PT_TUITION and FT_TUITION constants for each of the values

SuffolkResident.java (Page 1)

SuffolkResident.java (Page 3)

NassauResident.java (Page 1)

NassauResident.java (Page 3)

NonResident.java (Page 1)

NonResident.java (Page 3)

Mini-Quiz No. 2 (Part 2)

Go to the SCCC web site and find the correct current values for part-time and fulltime
tuition

Substitute those values in the Tuition interface

Tuition.java

FemaleNassauResident.java

Abstract Classes and Interfaces (Page 1)

A Java abstract class is a class which contains one or more abstract methods which
must be implemented by the subclasses

– May contain concrete methods

– Begins with the keyword “abstract” followed by the class definition

– Useful in situations when some general methods should be implemented in super
class and specialization behavior should be implemented by subclasses

– Can contain public, private and protected members

– Can have instance variables (interfaces cannot)

Abstract Classes and Interfaces (Page 2)

A Java interface may contain only method declarations and constants and does not
contain their implementation.

– Classes which implement the interface must provide the method definition for all
the methods present

– Begins with the keyword “interface”

– Useful in a situation when all its properties need to be implemented by subclasses

– Can only have public members

– All constants in an interface are by default public static final

Abstract Classes and Interfaces (Page 3)

An interface is also used in situations when a class needs to extend another class
apart from the abstract class

– In such situations it is not possible to have multiple inheritance of classes

– An interface on the other hand can be used when it is required to implement one or
more interfaces

– Abstract classes do not support multiple inheritance whereas an interface supports
“multiple inheritance”

Abstract Classes and Interfaces (Page 4)

Interfaces are slow as it requires extra indirection to find corresponding methods in
the actual class; abstract classes are fast

Interfaces are often used to describe the peripheral abilities of a class, not its central
identity

– E.g. Class “Automobile” might implement the interface “Recyclable” which could
apply to many otherwise totally unrelated objects

Abstract Classes and Interfaces (Page 5)

 There is no difference between a fully abstract class (all methods declared as
abstract and all fields are public static final) and an interface

 Neither abstract classes nor interfaces can be instantiated

Abstract Classes and Interfaces (Page 6)

 When to use which:

– If the various objects are all “of-a-kind” and share a common state and behavior,
then tend towards a common base (abstract) class

– If all they share is a set of method signatures, then tend towards an interface

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

Abstract Classes and Interfaces

CST141

Late Binding (Page 1)

Programmers should create systems (applications) that are easily extensible

– Capable of being extended—easy to add to later

Superclasses are designed as more general:

– Able to process existing as well as new subclasses

– Classes that are added later should not require modification to the general part of
the program (the superclass)

Late Binding (Page 2)

Late binding—a method from one class is not tied to method that calls it from another
class until run-time (when it is instantiated)

– Also called dynamic binding

– The opposite of early binding in which the methods of the two classes are compiled
together

Late binding makes it possible to add new classes to the hierarchy even after the base
class compiles

A Late Binding Example

Late Binding (Page 3)

Consider the Shape class example:

– Shape has:

•An attribute point where the shape starts to draw

•A method printIt() that “positions” a shape when drawn by calling a method
named position()

– Classes Circle and Rectangle both extend Shape

•Circle has attribute radius; Rectangle has attributes length and width

•Circle and radius have individual methods named draw() that “draw” the shapes,
both of which are called by the printIt() method of class Shape

A Late Binding Example

Late Binding (Page 4)

Consider the Shape class example (con):

– With early binding, if new class Triangle is created after Shape is compiled, method
draw() of either Circle or Rectangle will have been bound previously to printIt()

– With late binding (essentially the equivalent of polymorphism), method draw() of
Triangle (or Circle or Rectangle) correctly binds to printIt() at run-time

– Java uses late binding exclusively

A Late Binding Example

The Keyword abstract (Page 1)

Classes that are declared to be abstract cannot be instantiated …

– No objects may be created from it

This is true for a superclass that only has the function of supporting subclasses …

– Such classes are called abstract superclasses

The Keyword abstract (Page 2)

Example:

public abstract class Shape extends Object

Classes that may instantiate objects are called concrete classes

– E.g. the Circle, Rectangle and Triangle classes

Declaring abstract Methods (Page 1)

A method may be declared in a superclass declaration as abstract

As such the abstract method only may exist in an abstract class (or an interface)

Declaring abstract Methods (Page 2)

The declaration is only a reference since:

– It contains no statements

– Requires implementation of the abstract method in all of its subclasses

•So that required subclass methods are not forgotten

– Any call to the local abstract method is overridden because it will be handled by
methods of same name in the subclasses (uses redirection)

• In fact this is the only way that a superclass can call methods of its direct
subclass

Declaring abstract Methods (Page 3)

Format:

public abstract type/void methodName([parameterList]);

– The parameterList must match in number of variables and type the implemented
method

– Methods that are abstract may be overloaded

Example:

public abstract void draw();

– Note the placement of the semicolon (;) at end of the method header (signature)

Shape.java (Page 1)

Shape.java (Page 2)

Shape.java (Page 3)

Shape.java (Page 4)

The Keyword final

Used to indicate that the value of an identifier may not change after it has been
declared and initialized

– Often used for defining a constant

Example:

double final CREDITS = 7;

Declaring a Class as final

If a class is declared to be final, it must be the bottom class in an inheritance
hierarchy

– It may not have any subclasses

Example:

public final class Circle extends Shape

Circle.java (Page 1)

Circle.java (Page 2)

Circle.java (Page 3)

Circle.java (Page 4)

Rectangle.java (Page 1)

Rectangle.java (Page 2)

Rectangle.java (Page 3)

Rectangle.java (Page 4)

Rectangle.java (Page 5)

Rectangle.java (Page 6)

Shapes1.java

Shapes2.java

MiniQuiz No. 1—Part 1

Create a new final class Triangle that extends Shape with three instance variables
side1, side2 and side3

Write two constructors:

1. One passes default values zero (0) to the second constructor

2. The Triangle(int, int, int, int) constructor passes the point where it will draw to the
Shape superclass constructor and sets the three sides of the triangle

Write a set method for each data field which validates that a side is zero (0) or
greater

Write a get method for each data field

Write a method draw() that overrides the abstract method in Shape and that prints
the three sides of the triangle to the terminal window

MiniQuiz No. 1—Part 2

Update the “Shapes1.java” class file to instantiate an object t from the Triangle class
and then call its printIt() method

Update the “Shapes2.java” class file to instantiate a third element to the s array from
the Triangle constructor

A Student Hierarchy to Calculate Grades and Tuition

Student.java (Page 1)

Student.java (Page 2)

Student.java (Page 3)

Student.java (Page 4)

Student.java (Page 5)

Student.java (Page 6)

Student.java (Page 7)

Student.java (Page 8)

FemaleStudent.java

SuffolkResident.java (Page 1)

SuffolkResident.java (Page 2)

SuffolkResident.java (Page 3)

SuffolkResident.java (Page 4)

MaleSuffolkResident.java

NassauResident.java (Page 1)

NassauResident.java (Page 2)

NassauResident.java (Page 3)

NassauResident.java (Page 4)

NassauResident.java (Page 5)

NonResident.java (Page 1)

NonResident.java (Page 2)

NonResident.java (Page 3)

NonResident.java (Page 4)

NonResident.java (Page 5)

NonResident.java (Page 6)

AbstractsAndInterfaces1.java

ValidState.java (Page 1)

ValidState.java (Page 2)

ValidState.java (Page 3)

ValidState.java (Page 4)

SeniorCitizen.java (Page 1)

SeniorCitizen.java (Page 2)

SeniorCitizen.java (Page 3)

SeniorCitizen.java (Page 4)

AbstractsAndInterfaces1.java (Page 1)

AbstractsAndInterfaces1.java (Page 1)

Downcasting and Polymorphic Behavior (Page 1)

Casting a superclass reference to a subclass reference

Technique makes it possible to reference a subclass method from an object
instantiated from its superclass

Accomplished by casting the superclass object (superclass is the type) to the subclass
type (subclass is the constructor)

Downcasting and Polymorphic Behavior (Page 2)

Format:

SuperClassName object = new SubClassConstructor([args]);

– Possible only because the subclass is derived (extends from) from the superclass

Downcasting and Polymorphic Behavior (Page 3)

Example:

Student s = new SuffolkResident("Sally", "Walters", "Z", 7);

…

JOptionPane.showMessageDialog(null, s.getTuition())

– Calls getTuition() method of class SuffolkResident (not that of Student)

Subtyping1.java

Subtyping2.java (Page 1)

Subtyping2.java (Page 2)

Interfaces

Contains abstract method definitions needed by several classes and perhaps within
several class hierarchies

– An alternate to declaring them in a superclass

If a method is declared in an interface, all classes that “implement” the interface must
declare a method with the same signature

The Keyword interface

Used to declare an interface (replaces the keyword class in the header signature)

– As with a class name, the name of the interface must be identical to the “*.java”
filename

Example:

public interface Tuition

{

public abstract int getTuition();

}

– Filename for the above must be “Tuition.java”

Implementing Interfaces

Interfaces are not inherited in subclasses but rather they are implemented

Classes may implement several interfaces …

– Sort of like multiple inheritance …

– Unlike subclasses which may inherit (extend) from only one superclass

The Keyword implements

Used to implement an interface

Format:

public class ClassName [extends SuperClassName] implements InterfaceName1[,
InterfaceName2, …]

{ …

Example:

public class SuffolkResident extends Student implements Tuition

{ …

Declaring Constants in Interfaces (Page 1)

Besides method references, the only other elements that may be declared in
interfaces are constants

The constants can be accessed by all classes in which the interface is implemented

The constant identifier must be:

– Declared as final and may additionally be declared as static (they are static by
default)

– Assigned a value which may not change

Declaring Constants in Interfaces (Page 2)

Format:

[public] [static] [final] type CONSTANT_NAME = value;

Example:

public interface Tuition

{

static final int PT_TUITION = 105;

static final int FT_TUITION = 1175;

}

Interface Programming Practice (Page 1)

According to the “Java Language Specification”, in standard practice within an
interface:

– Methods are declared without the keywords public and abstract because these
specifications are redundant

– Constants are declared without the keywords public, static and final because they
also are redundant

Interface Programming Practice (Page 2)

Example:

public interface Tuition

{

int getTuition();

int PT_TUITION = 105;

int FT_TUITION = 1175;

}

Tuition.java

Mini-Quiz No. 2 (Part 1)

Find the values for “part-time” and “full-time” tuition in method getTuition() of
SuffolkResident, NassauResident, and NonResident classes

Substitute the PT_TUITION and FT_TUITION constants for each of the values

SuffolkResident.java (Page 1)

SuffolkResident.java (Page 3)

NassauResident.java (Page 1)

NassauResident.java (Page 3)

NonResident.java (Page 1)

NonResident.java (Page 3)

Mini-Quiz No. 2 (Part 2)

Go to the SCCC web site and find the correct current values for part-time and fulltime
tuition

Substitute those values in the Tuition interface

Tuition.java

FemaleNassauResident.java

Abstract Classes and Interfaces (Page 1)

A Java abstract class is a class which contains one or more abstract methods which
must be implemented by the subclasses

– May contain concrete methods

– Begins with the keyword “abstract” followed by the class definition

– Useful in situations when some general methods should be implemented in super
class and specialization behavior should be implemented by subclasses

– Can contain public, private and protected members

– Can have instance variables (interfaces cannot)

Abstract Classes and Interfaces (Page 2)

A Java interface may contain only method declarations and constants and does not
contain their implementation.

– Classes which implement the interface must provide the method definition for all
the methods present

– Begins with the keyword “interface”

– Useful in a situation when all its properties need to be implemented by subclasses

– Can only have public members

– All constants in an interface are by default public static final

Abstract Classes and Interfaces (Page 3)

An interface is also used in situations when a class needs to extend another class
apart from the abstract class

– In such situations it is not possible to have multiple inheritance of classes

– An interface on the other hand can be used when it is required to implement one or
more interfaces

– Abstract classes do not support multiple inheritance whereas an interface supports
“multiple inheritance”

Abstract Classes and Interfaces (Page 4)

Interfaces are slow as it requires extra indirection to find corresponding methods in
the actual class; abstract classes are fast

Interfaces are often used to describe the peripheral abilities of a class, not its central
identity

– E.g. Class “Automobile” might implement the interface “Recyclable” which could
apply to many otherwise totally unrelated objects

Abstract Classes and Interfaces (Page 5)

 There is no difference between a fully abstract class (all methods declared as
abstract and all fields are public static final) and an interface

 Neither abstract classes nor interfaces can be instantiated

Abstract Classes and Interfaces (Page 6)

 When to use which:

– If the various objects are all “of-a-kind” and share a common state and behavior,
then tend towards a common base (abstract) class

– If all they share is a set of method signatures, then tend towards an interface

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

Abstract Classes and Interfaces

CST141

Late Binding (Page 1)

Programmers should create systems (applications) that are easily extensible

– Capable of being extended—easy to add to later

Superclasses are designed as more general:

– Able to process existing as well as new subclasses

– Classes that are added later should not require modification to the general part of
the program (the superclass)

Late Binding (Page 2)

Late binding—a method from one class is not tied to method that calls it from another
class until run-time (when it is instantiated)

– Also called dynamic binding

– The opposite of early binding in which the methods of the two classes are compiled
together

Late binding makes it possible to add new classes to the hierarchy even after the base
class compiles

A Late Binding Example

Late Binding (Page 3)

Consider the Shape class example:

– Shape has:

•An attribute point where the shape starts to draw

•A method printIt() that “positions” a shape when drawn by calling a method
named position()

– Classes Circle and Rectangle both extend Shape

•Circle has attribute radius; Rectangle has attributes length and width

•Circle and radius have individual methods named draw() that “draw” the shapes,
both of which are called by the printIt() method of class Shape

A Late Binding Example

Late Binding (Page 4)

Consider the Shape class example (con):

– With early binding, if new class Triangle is created after Shape is compiled, method
draw() of either Circle or Rectangle will have been bound previously to printIt()

– With late binding (essentially the equivalent of polymorphism), method draw() of
Triangle (or Circle or Rectangle) correctly binds to printIt() at run-time

– Java uses late binding exclusively

A Late Binding Example

The Keyword abstract (Page 1)

Classes that are declared to be abstract cannot be instantiated …

– No objects may be created from it

This is true for a superclass that only has the function of supporting subclasses …

– Such classes are called abstract superclasses

The Keyword abstract (Page 2)

Example:

public abstract class Shape extends Object

Classes that may instantiate objects are called concrete classes

– E.g. the Circle, Rectangle and Triangle classes

Declaring abstract Methods (Page 1)

A method may be declared in a superclass declaration as abstract

As such the abstract method only may exist in an abstract class (or an interface)

Declaring abstract Methods (Page 2)

The declaration is only a reference since:

– It contains no statements

– Requires implementation of the abstract method in all of its subclasses

•So that required subclass methods are not forgotten

– Any call to the local abstract method is overridden because it will be handled by
methods of same name in the subclasses (uses redirection)

• In fact this is the only way that a superclass can call methods of its direct
subclass

Declaring abstract Methods (Page 3)

Format:

public abstract type/void methodName([parameterList]);

– The parameterList must match in number of variables and type the implemented
method

– Methods that are abstract may be overloaded

Example:

public abstract void draw();

– Note the placement of the semicolon (;) at end of the method header (signature)

Shape.java (Page 1)

Shape.java (Page 2)

Shape.java (Page 3)

Shape.java (Page 4)

The Keyword final

Used to indicate that the value of an identifier may not change after it has been
declared and initialized

– Often used for defining a constant

Example:

double final CREDITS = 7;

Declaring a Class as final

If a class is declared to be final, it must be the bottom class in an inheritance
hierarchy

– It may not have any subclasses

Example:

public final class Circle extends Shape

Circle.java (Page 1)

Circle.java (Page 2)

Circle.java (Page 3)

Circle.java (Page 4)

Rectangle.java (Page 1)

Rectangle.java (Page 2)

Rectangle.java (Page 3)

Rectangle.java (Page 4)

Rectangle.java (Page 5)

Rectangle.java (Page 6)

Shapes1.java

Shapes2.java

MiniQuiz No. 1—Part 1

Create a new final class Triangle that extends Shape with three instance variables
side1, side2 and side3

Write two constructors:

1. One passes default values zero (0) to the second constructor

2. The Triangle(int, int, int, int) constructor passes the point where it will draw to the
Shape superclass constructor and sets the three sides of the triangle

Write a set method for each data field which validates that a side is zero (0) or
greater

Write a get method for each data field

Write a method draw() that overrides the abstract method in Shape and that prints
the three sides of the triangle to the terminal window

MiniQuiz No. 1—Part 2

Update the “Shapes1.java” class file to instantiate an object t from the Triangle class
and then call its printIt() method

Update the “Shapes2.java” class file to instantiate a third element to the s array from
the Triangle constructor

A Student Hierarchy to Calculate Grades and Tuition

Student.java (Page 1)

Student.java (Page 2)

Student.java (Page 3)

Student.java (Page 4)

Student.java (Page 5)

Student.java (Page 6)

Student.java (Page 7)

Student.java (Page 8)

FemaleStudent.java

SuffolkResident.java (Page 1)

SuffolkResident.java (Page 2)

SuffolkResident.java (Page 3)

SuffolkResident.java (Page 4)

MaleSuffolkResident.java

NassauResident.java (Page 1)

NassauResident.java (Page 2)

NassauResident.java (Page 3)

NassauResident.java (Page 4)

NassauResident.java (Page 5)

NonResident.java (Page 1)

NonResident.java (Page 2)

NonResident.java (Page 3)

NonResident.java (Page 4)

NonResident.java (Page 5)

NonResident.java (Page 6)

AbstractsAndInterfaces1.java

ValidState.java (Page 1)

ValidState.java (Page 2)

ValidState.java (Page 3)

ValidState.java (Page 4)

SeniorCitizen.java (Page 1)

SeniorCitizen.java (Page 2)

SeniorCitizen.java (Page 3)

SeniorCitizen.java (Page 4)

AbstractsAndInterfaces1.java (Page 1)

AbstractsAndInterfaces1.java (Page 1)

Downcasting and Polymorphic Behavior (Page 1)

Casting a superclass reference to a subclass reference

Technique makes it possible to reference a subclass method from an object
instantiated from its superclass

Accomplished by casting the superclass object (superclass is the type) to the subclass
type (subclass is the constructor)

Downcasting and Polymorphic Behavior (Page 2)

Format:

SuperClassName object = new SubClassConstructor([args]);

– Possible only because the subclass is derived (extends from) from the superclass

Downcasting and Polymorphic Behavior (Page 3)

Example:

Student s = new SuffolkResident("Sally", "Walters", "Z", 7);

…

JOptionPane.showMessageDialog(null, s.getTuition())

– Calls getTuition() method of class SuffolkResident (not that of Student)

Subtyping1.java

Subtyping2.java (Page 1)

Subtyping2.java (Page 2)

Interfaces

Contains abstract method definitions needed by several classes and perhaps within
several class hierarchies

– An alternate to declaring them in a superclass

If a method is declared in an interface, all classes that “implement” the interface must
declare a method with the same signature

The Keyword interface

Used to declare an interface (replaces the keyword class in the header signature)

– As with a class name, the name of the interface must be identical to the “*.java”
filename

Example:

public interface Tuition

{

public abstract int getTuition();

}

– Filename for the above must be “Tuition.java”

Implementing Interfaces

Interfaces are not inherited in subclasses but rather they are implemented

Classes may implement several interfaces …

– Sort of like multiple inheritance …

– Unlike subclasses which may inherit (extend) from only one superclass

The Keyword implements

Used to implement an interface

Format:

public class ClassName [extends SuperClassName] implements InterfaceName1[,
InterfaceName2, …]

{ …

Example:

public class SuffolkResident extends Student implements Tuition

{ …

Declaring Constants in Interfaces (Page 1)

Besides method references, the only other elements that may be declared in
interfaces are constants

The constants can be accessed by all classes in which the interface is implemented

The constant identifier must be:

– Declared as final and may additionally be declared as static (they are static by
default)

– Assigned a value which may not change

Declaring Constants in Interfaces (Page 2)

Format:

[public] [static] [final] type CONSTANT_NAME = value;

Example:

public interface Tuition

{

static final int PT_TUITION = 105;

static final int FT_TUITION = 1175;

}

Interface Programming Practice (Page 1)

According to the “Java Language Specification”, in standard practice within an
interface:

– Methods are declared without the keywords public and abstract because these
specifications are redundant

– Constants are declared without the keywords public, static and final because they
also are redundant

Interface Programming Practice (Page 2)

Example:

public interface Tuition

{

int getTuition();

int PT_TUITION = 105;

int FT_TUITION = 1175;

}

Tuition.java

Mini-Quiz No. 2 (Part 1)

Find the values for “part-time” and “full-time” tuition in method getTuition() of
SuffolkResident, NassauResident, and NonResident classes

Substitute the PT_TUITION and FT_TUITION constants for each of the values

SuffolkResident.java (Page 1)

SuffolkResident.java (Page 3)

NassauResident.java (Page 1)

NassauResident.java (Page 3)

NonResident.java (Page 1)

NonResident.java (Page 3)

Mini-Quiz No. 2 (Part 2)

Go to the SCCC web site and find the correct current values for part-time and fulltime
tuition

Substitute those values in the Tuition interface

Tuition.java

FemaleNassauResident.java

Abstract Classes and Interfaces (Page 1)

A Java abstract class is a class which contains one or more abstract methods which
must be implemented by the subclasses

– May contain concrete methods

– Begins with the keyword “abstract” followed by the class definition

– Useful in situations when some general methods should be implemented in super
class and specialization behavior should be implemented by subclasses

– Can contain public, private and protected members

– Can have instance variables (interfaces cannot)

Abstract Classes and Interfaces (Page 2)

A Java interface may contain only method declarations and constants and does not
contain their implementation.

– Classes which implement the interface must provide the method definition for all
the methods present

– Begins with the keyword “interface”

– Useful in a situation when all its properties need to be implemented by subclasses

– Can only have public members

– All constants in an interface are by default public static final

Abstract Classes and Interfaces (Page 3)

An interface is also used in situations when a class needs to extend another class
apart from the abstract class

– In such situations it is not possible to have multiple inheritance of classes

– An interface on the other hand can be used when it is required to implement one or
more interfaces

– Abstract classes do not support multiple inheritance whereas an interface supports
“multiple inheritance”

Abstract Classes and Interfaces (Page 4)

Interfaces are slow as it requires extra indirection to find corresponding methods in
the actual class; abstract classes are fast

Interfaces are often used to describe the peripheral abilities of a class, not its central
identity

– E.g. Class “Automobile” might implement the interface “Recyclable” which could
apply to many otherwise totally unrelated objects

Abstract Classes and Interfaces (Page 5)

 There is no difference between a fully abstract class (all methods declared as
abstract and all fields are public static final) and an interface

 Neither abstract classes nor interfaces can be instantiated

Abstract Classes and Interfaces (Page 6)

 When to use which:

– If the various objects are all “of-a-kind” and share a common state and behavior,
then tend towards a common base (abstract) class

– If all they share is a set of method signatures, then tend towards an interface

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

Abstract Classes and Interfaces

CST141

Late Binding (Page 1)

Programmers should create systems (applications) that are easily extensible

– Capable of being extended—easy to add to later

Superclasses are designed as more general:

– Able to process existing as well as new subclasses

– Classes that are added later should not require modification to the general part of
the program (the superclass)

Late Binding (Page 2)

Late binding—a method from one class is not tied to method that calls it from another
class until run-time (when it is instantiated)

– Also called dynamic binding

– The opposite of early binding in which the methods of the two classes are compiled
together

Late binding makes it possible to add new classes to the hierarchy even after the base
class compiles

A Late Binding Example

Late Binding (Page 3)

Consider the Shape class example:

– Shape has:

•An attribute point where the shape starts to draw

•A method printIt() that “positions” a shape when drawn by calling a method
named position()

– Classes Circle and Rectangle both extend Shape

•Circle has attribute radius; Rectangle has attributes length and width

•Circle and radius have individual methods named draw() that “draw” the shapes,
both of which are called by the printIt() method of class Shape

A Late Binding Example

Late Binding (Page 4)

Consider the Shape class example (con):

– With early binding, if new class Triangle is created after Shape is compiled, method
draw() of either Circle or Rectangle will have been bound previously to printIt()

– With late binding (essentially the equivalent of polymorphism), method draw() of
Triangle (or Circle or Rectangle) correctly binds to printIt() at run-time

– Java uses late binding exclusively

A Late Binding Example

The Keyword abstract (Page 1)

Classes that are declared to be abstract cannot be instantiated …

– No objects may be created from it

This is true for a superclass that only has the function of supporting subclasses …

– Such classes are called abstract superclasses

The Keyword abstract (Page 2)

Example:

public abstract class Shape extends Object

Classes that may instantiate objects are called concrete classes

– E.g. the Circle, Rectangle and Triangle classes

Declaring abstract Methods (Page 1)

A method may be declared in a superclass declaration as abstract

As such the abstract method only may exist in an abstract class (or an interface)

Declaring abstract Methods (Page 2)

The declaration is only a reference since:

– It contains no statements

– Requires implementation of the abstract method in all of its subclasses

•So that required subclass methods are not forgotten

– Any call to the local abstract method is overridden because it will be handled by
methods of same name in the subclasses (uses redirection)

• In fact this is the only way that a superclass can call methods of its direct
subclass

Declaring abstract Methods (Page 3)

Format:

public abstract type/void methodName([parameterList]);

– The parameterList must match in number of variables and type the implemented
method

– Methods that are abstract may be overloaded

Example:

public abstract void draw();

– Note the placement of the semicolon (;) at end of the method header (signature)

Shape.java (Page 1)

Shape.java (Page 2)

Shape.java (Page 3)

Shape.java (Page 4)

The Keyword final

Used to indicate that the value of an identifier may not change after it has been
declared and initialized

– Often used for defining a constant

Example:

double final CREDITS = 7;

Declaring a Class as final

If a class is declared to be final, it must be the bottom class in an inheritance
hierarchy

– It may not have any subclasses

Example:

public final class Circle extends Shape

Circle.java (Page 1)

Circle.java (Page 2)

Circle.java (Page 3)

Circle.java (Page 4)

Rectangle.java (Page 1)

Rectangle.java (Page 2)

Rectangle.java (Page 3)

Rectangle.java (Page 4)

Rectangle.java (Page 5)

Rectangle.java (Page 6)

Shapes1.java

Shapes2.java

MiniQuiz No. 1—Part 1

Create a new final class Triangle that extends Shape with three instance variables
side1, side2 and side3

Write two constructors:

1. One passes default values zero (0) to the second constructor

2. The Triangle(int, int, int, int) constructor passes the point where it will draw to the
Shape superclass constructor and sets the three sides of the triangle

Write a set method for each data field which validates that a side is zero (0) or
greater

Write a get method for each data field

Write a method draw() that overrides the abstract method in Shape and that prints
the three sides of the triangle to the terminal window

MiniQuiz No. 1—Part 2

Update the “Shapes1.java” class file to instantiate an object t from the Triangle class
and then call its printIt() method

Update the “Shapes2.java” class file to instantiate a third element to the s array from
the Triangle constructor

A Student Hierarchy to Calculate Grades and Tuition

Student.java (Page 1)

Student.java (Page 2)

Student.java (Page 3)

Student.java (Page 4)

Student.java (Page 5)

Student.java (Page 6)

Student.java (Page 7)

Student.java (Page 8)

FemaleStudent.java

SuffolkResident.java (Page 1)

SuffolkResident.java (Page 2)

SuffolkResident.java (Page 3)

SuffolkResident.java (Page 4)

MaleSuffolkResident.java

NassauResident.java (Page 1)

NassauResident.java (Page 2)

NassauResident.java (Page 3)

NassauResident.java (Page 4)

NassauResident.java (Page 5)

NonResident.java (Page 1)

NonResident.java (Page 2)

NonResident.java (Page 3)

NonResident.java (Page 4)

NonResident.java (Page 5)

NonResident.java (Page 6)

AbstractsAndInterfaces1.java

ValidState.java (Page 1)

ValidState.java (Page 2)

ValidState.java (Page 3)

ValidState.java (Page 4)

SeniorCitizen.java (Page 1)

SeniorCitizen.java (Page 2)

SeniorCitizen.java (Page 3)

SeniorCitizen.java (Page 4)

AbstractsAndInterfaces1.java (Page 1)

AbstractsAndInterfaces1.java (Page 1)

Downcasting and Polymorphic Behavior (Page 1)

Casting a superclass reference to a subclass reference

Technique makes it possible to reference a subclass method from an object
instantiated from its superclass

Accomplished by casting the superclass object (superclass is the type) to the subclass
type (subclass is the constructor)

Downcasting and Polymorphic Behavior (Page 2)

Format:

SuperClassName object = new SubClassConstructor([args]);

– Possible only because the subclass is derived (extends from) from the superclass

Downcasting and Polymorphic Behavior (Page 3)

Example:

Student s = new SuffolkResident("Sally", "Walters", "Z", 7);

…

JOptionPane.showMessageDialog(null, s.getTuition())

– Calls getTuition() method of class SuffolkResident (not that of Student)

Subtyping1.java

Subtyping2.java (Page 1)

Subtyping2.java (Page 2)

Interfaces

Contains abstract method definitions needed by several classes and perhaps within
several class hierarchies

– An alternate to declaring them in a superclass

If a method is declared in an interface, all classes that “implement” the interface must
declare a method with the same signature

The Keyword interface

Used to declare an interface (replaces the keyword class in the header signature)

– As with a class name, the name of the interface must be identical to the “*.java”
filename

Example:

public interface Tuition

{

public abstract int getTuition();

}

– Filename for the above must be “Tuition.java”

Implementing Interfaces

Interfaces are not inherited in subclasses but rather they are implemented

Classes may implement several interfaces …

– Sort of like multiple inheritance …

– Unlike subclasses which may inherit (extend) from only one superclass

The Keyword implements

Used to implement an interface

Format:

public class ClassName [extends SuperClassName] implements InterfaceName1[,
InterfaceName2, …]

{ …

Example:

public class SuffolkResident extends Student implements Tuition

{ …

Declaring Constants in Interfaces (Page 1)

Besides method references, the only other elements that may be declared in
interfaces are constants

The constants can be accessed by all classes in which the interface is implemented

The constant identifier must be:

– Declared as final and may additionally be declared as static (they are static by
default)

– Assigned a value which may not change

Declaring Constants in Interfaces (Page 2)

Format:

[public] [static] [final] type CONSTANT_NAME = value;

Example:

public interface Tuition

{

static final int PT_TUITION = 105;

static final int FT_TUITION = 1175;

}

Interface Programming Practice (Page 1)

According to the “Java Language Specification”, in standard practice within an
interface:

– Methods are declared without the keywords public and abstract because these
specifications are redundant

– Constants are declared without the keywords public, static and final because they
also are redundant

Interface Programming Practice (Page 2)

Example:

public interface Tuition

{

int getTuition();

int PT_TUITION = 105;

int FT_TUITION = 1175;

}

Tuition.java

Mini-Quiz No. 2 (Part 1)

Find the values for “part-time” and “full-time” tuition in method getTuition() of
SuffolkResident, NassauResident, and NonResident classes

Substitute the PT_TUITION and FT_TUITION constants for each of the values

SuffolkResident.java (Page 1)

SuffolkResident.java (Page 3)

NassauResident.java (Page 1)

NassauResident.java (Page 3)

NonResident.java (Page 1)

NonResident.java (Page 3)

Mini-Quiz No. 2 (Part 2)

Go to the SCCC web site and find the correct current values for part-time and fulltime
tuition

Substitute those values in the Tuition interface

Tuition.java

FemaleNassauResident.java

Abstract Classes and Interfaces (Page 1)

A Java abstract class is a class which contains one or more abstract methods which
must be implemented by the subclasses

– May contain concrete methods

– Begins with the keyword “abstract” followed by the class definition

– Useful in situations when some general methods should be implemented in super
class and specialization behavior should be implemented by subclasses

– Can contain public, private and protected members

– Can have instance variables (interfaces cannot)

Abstract Classes and Interfaces (Page 2)

A Java interface may contain only method declarations and constants and does not
contain their implementation.

– Classes which implement the interface must provide the method definition for all
the methods present

– Begins with the keyword “interface”

– Useful in a situation when all its properties need to be implemented by subclasses

– Can only have public members

– All constants in an interface are by default public static final

Abstract Classes and Interfaces (Page 3)

An interface is also used in situations when a class needs to extend another class
apart from the abstract class

– In such situations it is not possible to have multiple inheritance of classes

– An interface on the other hand can be used when it is required to implement one or
more interfaces

– Abstract classes do not support multiple inheritance whereas an interface supports
“multiple inheritance”

Abstract Classes and Interfaces (Page 4)

Interfaces are slow as it requires extra indirection to find corresponding methods in
the actual class; abstract classes are fast

Interfaces are often used to describe the peripheral abilities of a class, not its central
identity

– E.g. Class “Automobile” might implement the interface “Recyclable” which could
apply to many otherwise totally unrelated objects

Abstract Classes and Interfaces (Page 5)

 There is no difference between a fully abstract class (all methods declared as
abstract and all fields are public static final) and an interface

 Neither abstract classes nor interfaces can be instantiated

Abstract Classes and Interfaces (Page 6)

 When to use which:

– If the various objects are all “of-a-kind” and share a common state and behavior,
then tend towards a common base (abstract) class

– If all they share is a set of method signatures, then tend towards an interface

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

CST141—Abstract Classes and Interfaces Page 2

Abstract Classes and Interfaces

CST141

Late Binding (Page 1)

Programmers should create systems (applications) that are easily extensible

– Capable of being extended—easy to add to later

Superclasses are designed as more general:

– Able to process existing as well as new subclasses

– Classes that are added later should not require modification to the general part of
the program (the superclass)

Late Binding (Page 2)

Late binding—a method from one class is not tied to method that calls it from another
class until run-time (when it is instantiated)

– Also called dynamic binding

– The opposite of early binding in which the methods of the two classes are compiled
together

Late binding makes it possible to add new classes to the hierarchy even after the base
class compiles

A Late Binding Example

Late Binding (Page 3)

Consider the Shape class example:

– Shape has:

•An attribute point where the shape starts to draw

•A method printIt() that “positions” a shape when drawn by calling a method
named position()

– Classes Circle and Rectangle both extend Shape

•Circle has attribute radius; Rectangle has attributes length and width

•Circle and radius have individual methods named draw() that “draw” the shapes,
both of which are called by the printIt() method of class Shape

A Late Binding Example

Late Binding (Page 4)

Consider the Shape class example (con):

– With early binding, if new class Triangle is created after Shape is compiled, method
draw() of either Circle or Rectangle will have been bound previously to printIt()

– With late binding (essentially the equivalent of polymorphism), method draw() of
Triangle (or Circle or Rectangle) correctly binds to printIt() at run-time

– Java uses late binding exclusively

A Late Binding Example

The Keyword abstract (Page 1)

Classes that are declared to be abstract cannot be instantiated …

– No objects may be created from it

This is true for a superclass that only has the function of supporting subclasses …

– Such classes are called abstract superclasses

The Keyword abstract (Page 2)

Example:

public abstract class Shape extends Object

Classes that may instantiate objects are called concrete classes

– E.g. the Circle, Rectangle and Triangle classes

Declaring abstract Methods (Page 1)

A method may be declared in a superclass declaration as abstract

As such the abstract method only may exist in an abstract class (or an interface)

Declaring abstract Methods (Page 2)

The declaration is only a reference since:

– It contains no statements

– Requires implementation of the abstract method in all of its subclasses

•So that required subclass methods are not forgotten

– Any call to the local abstract method is overridden because it will be handled by
methods of same name in the subclasses (uses redirection)

• In fact this is the only way that a superclass can call methods of its direct
subclass

Declaring abstract Methods (Page 3)

Format:

public abstract type/void methodName([parameterList]);

– The parameterList must match in number of variables and type the implemented
method

– Methods that are abstract may be overloaded

Example:

public abstract void draw();

– Note the placement of the semicolon (;) at end of the method header (signature)

Shape.java (Page 1)

Shape.java (Page 2)

Shape.java (Page 3)

Shape.java (Page 4)

The Keyword final

Used to indicate that the value of an identifier may not change after it has been
declared and initialized

– Often used for defining a constant

Example:

double final CREDITS = 7;

Declaring a Class as final

If a class is declared to be final, it must be the bottom class in an inheritance
hierarchy

– It may not have any subclasses

Example:

public final class Circle extends Shape

Circle.java (Page 1)

Circle.java (Page 2)

Circle.java (Page 3)

Circle.java (Page 4)

Rectangle.java (Page 1)

Rectangle.java (Page 2)

Rectangle.java (Page 3)

Rectangle.java (Page 4)

Rectangle.java (Page 5)

Rectangle.java (Page 6)

Shapes1.java

Shapes2.java

MiniQuiz No. 1—Part 1

Create a new final class Triangle that extends Shape with three instance variables
side1, side2 and side3

Write two constructors:

1. One passes default values zero (0) to the second constructor

2. The Triangle(int, int, int, int) constructor passes the point where it will draw to the
Shape superclass constructor and sets the three sides of the triangle

Write a set method for each data field which validates that a side is zero (0) or
greater

Write a get method for each data field

Write a method draw() that overrides the abstract method in Shape and that prints
the three sides of the triangle to the terminal window

MiniQuiz No. 1—Part 2

Update the “Shapes1.java” class file to instantiate an object t from the Triangle class
and then call its printIt() method

Update the “Shapes2.java” class file to instantiate a third element to the s array from
the Triangle constructor

A Student Hierarchy to Calculate Grades and Tuition

Student.java (Page 1)

Student.java (Page 2)

Student.java (Page 3)

Student.java (Page 4)

Student.java (Page 5)

Student.java (Page 6)

Student.java (Page 7)

Student.java (Page 8)

FemaleStudent.java

SuffolkResident.java (Page 1)

SuffolkResident.java (Page 2)

SuffolkResident.java (Page 3)

SuffolkResident.java (Page 4)

MaleSuffolkResident.java

NassauResident.java (Page 1)

NassauResident.java (Page 2)

NassauResident.java (Page 3)

NassauResident.java (Page 4)

NassauResident.java (Page 5)

NonResident.java (Page 1)

NonResident.java (Page 2)

NonResident.java (Page 3)

NonResident.java (Page 4)

NonResident.java (Page 5)

NonResident.java (Page 6)

AbstractsAndInterfaces1.java

ValidState.java (Page 1)

ValidState.java (Page 2)

ValidState.java (Page 3)

ValidState.java (Page 4)

SeniorCitizen.java (Page 1)

SeniorCitizen.java (Page 2)

SeniorCitizen.java (Page 3)

SeniorCitizen.java (Page 4)

AbstractsAndInterfaces1.java (Page 1)

AbstractsAndInterfaces1.java (Page 1)

Downcasting and Polymorphic Behavior (Page 1)

Casting a superclass reference to a subclass reference

Technique makes it possible to reference a subclass method from an object
instantiated from its superclass

Accomplished by casting the superclass object (superclass is the type) to the subclass
type (subclass is the constructor)

Downcasting and Polymorphic Behavior (Page 2)

Format:

SuperClassName object = new SubClassConstructor([args]);

– Possible only because the subclass is derived (extends from) from the superclass

Downcasting and Polymorphic Behavior (Page 3)

Example:

Student s = new SuffolkResident("Sally", "Walters", "Z", 7);

…

JOptionPane.showMessageDialog(null, s.getTuition())

– Calls getTuition() method of class SuffolkResident (not that of Student)

Subtyping1.java

Subtyping2.java (Page 1)

Subtyping2.java (Page 2)

Interfaces

Contains abstract method definitions needed by several classes and perhaps within
several class hierarchies

– An alternate to declaring them in a superclass

If a method is declared in an interface, all classes that “implement” the interface must
declare a method with the same signature

The Keyword interface

Used to declare an interface (replaces the keyword class in the header signature)

– As with a class name, the name of the interface must be identical to the “*.java”
filename

Example:

public interface Tuition

{

public abstract int getTuition();

}

– Filename for the above must be “Tuition.java”

Implementing Interfaces

Interfaces are not inherited in subclasses but rather they are implemented

Classes may implement several interfaces …

– Sort of like multiple inheritance …

– Unlike subclasses which may inherit (extend) from only one superclass

The Keyword implements

Used to implement an interface

Format:

public class ClassName [extends SuperClassName] implements InterfaceName1[,
InterfaceName2, …]

{ …

Example:

public class SuffolkResident extends Student implements Tuition

{ …

Declaring Constants in Interfaces (Page 1)

Besides method references, the only other elements that may be declared in
interfaces are constants

The constants can be accessed by all classes in which the interface is implemented

The constant identifier must be:

– Declared as final and may additionally be declared as static (they are static by
default)

– Assigned a value which may not change

Declaring Constants in Interfaces (Page 2)

Format:

[public] [static] [final] type CONSTANT_NAME = value;

Example:

public interface Tuition

{

static final int PT_TUITION = 105;

static final int FT_TUITION = 1175;

}

Interface Programming Practice (Page 1)

According to the “Java Language Specification”, in standard practice within an
interface:

– Methods are declared without the keywords public and abstract because these
specifications are redundant

– Constants are declared without the keywords public, static and final because they
also are redundant

Interface Programming Practice (Page 2)

Example:

public interface Tuition

{

int getTuition();

int PT_TUITION = 105;

int FT_TUITION = 1175;

}

Tuition.java

Mini-Quiz No. 2 (Part 1)

Find the values for “part-time” and “full-time” tuition in method getTuition() of
SuffolkResident, NassauResident, and NonResident classes

Substitute the PT_TUITION and FT_TUITION constants for each of the values

SuffolkResident.java (Page 1)

SuffolkResident.java (Page 3)

NassauResident.java (Page 1)

NassauResident.java (Page 3)

NonResident.java (Page 1)

NonResident.java (Page 3)

Mini-Quiz No. 2 (Part 2)

Go to the SCCC web site and find the correct current values for part-time and fulltime
tuition

Substitute those values in the Tuition interface

Tuition.java

FemaleNassauResident.java

Abstract Classes and Interfaces (Page 1)

A Java abstract class is a class which contains one or more abstract methods which
must be implemented by the subclasses

– May contain concrete methods

– Begins with the keyword “abstract” followed by the class definition

– Useful in situations when some general methods should be implemented in super
class and specialization behavior should be implemented by subclasses

– Can contain public, private and protected members

– Can have instance variables (interfaces cannot)

Abstract Classes and Interfaces (Page 2)

A Java interface may contain only method declarations and constants and does not
contain their implementation.

– Classes which implement the interface must provide the method definition for all
the methods present

– Begins with the keyword “interface”

– Useful in a situation when all its properties need to be implemented by subclasses

– Can only have public members

– All constants in an interface are by default public static final

Abstract Classes and Interfaces (Page 3)

An interface is also used in situations when a class needs to extend another class
apart from the abstract class

– In such situations it is not possible to have multiple inheritance of classes

– An interface on the other hand can be used when it is required to implement one or
more interfaces

– Abstract classes do not support multiple inheritance whereas an interface supports
“multiple inheritance”

Abstract Classes and Interfaces (Page 4)

Interfaces are slow as it requires extra indirection to find corresponding methods in
the actual class; abstract classes are fast

Interfaces are often used to describe the peripheral abilities of a class, not its central
identity

– E.g. Class “Automobile” might implement the interface “Recyclable” which could
apply to many otherwise totally unrelated objects

Abstract Classes and Interfaces (Page 5)

 There is no difference between a fully abstract class (all methods declared as
abstract and all fields are public static final) and an interface

 Neither abstract classes nor interfaces can be instantiated

Abstract Classes and Interfaces (Page 6)

 When to use which:

– If the various objects are all “of-a-kind” and share a common state and behavior,
then tend towards a common base (abstract) class

– If all they share is a set of method signatures, then tend towards an interface

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

Abstract Classes and Interfaces

CST141

Late Binding (Page 1)

Programmers should create systems (applications) that are easily extensible

– Capable of being extended—easy to add to later

Superclasses are designed as more general:

– Able to process existing as well as new subclasses

– Classes that are added later should not require modification to the general part of
the program (the superclass)

Late Binding (Page 2)

Late binding—a method from one class is not tied to method that calls it from another
class until run-time (when it is instantiated)

– Also called dynamic binding

– The opposite of early binding in which the methods of the two classes are compiled
together

Late binding makes it possible to add new classes to the hierarchy even after the base
class compiles

A Late Binding Example

Late Binding (Page 3)

Consider the Shape class example:

– Shape has:

•An attribute point where the shape starts to draw

•A method printIt() that “positions” a shape when drawn by calling a method
named position()

– Classes Circle and Rectangle both extend Shape

•Circle has attribute radius; Rectangle has attributes length and width

•Circle and radius have individual methods named draw() that “draw” the shapes,
both of which are called by the printIt() method of class Shape

A Late Binding Example

Late Binding (Page 4)

Consider the Shape class example (con):

– With early binding, if new class Triangle is created after Shape is compiled, method
draw() of either Circle or Rectangle will have been bound previously to printIt()

– With late binding (essentially the equivalent of polymorphism), method draw() of
Triangle (or Circle or Rectangle) correctly binds to printIt() at run-time

– Java uses late binding exclusively

A Late Binding Example

The Keyword abstract (Page 1)

Classes that are declared to be abstract cannot be instantiated …

– No objects may be created from it

This is true for a superclass that only has the function of supporting subclasses …

– Such classes are called abstract superclasses

The Keyword abstract (Page 2)

Example:

public abstract class Shape extends Object

Classes that may instantiate objects are called concrete classes

– E.g. the Circle, Rectangle and Triangle classes

Declaring abstract Methods (Page 1)

A method may be declared in a superclass declaration as abstract

As such the abstract method only may exist in an abstract class (or an interface)

Declaring abstract Methods (Page 2)

The declaration is only a reference since:

– It contains no statements

– Requires implementation of the abstract method in all of its subclasses

•So that required subclass methods are not forgotten

– Any call to the local abstract method is overridden because it will be handled by
methods of same name in the subclasses (uses redirection)

• In fact this is the only way that a superclass can call methods of its direct
subclass

Declaring abstract Methods (Page 3)

Format:

public abstract type/void methodName([parameterList]);

– The parameterList must match in number of variables and type the implemented
method

– Methods that are abstract may be overloaded

Example:

public abstract void draw();

– Note the placement of the semicolon (;) at end of the method header (signature)

Shape.java (Page 1)

Shape.java (Page 2)

Shape.java (Page 3)

Shape.java (Page 4)

The Keyword final

Used to indicate that the value of an identifier may not change after it has been
declared and initialized

– Often used for defining a constant

Example:

double final CREDITS = 7;

Declaring a Class as final

If a class is declared to be final, it must be the bottom class in an inheritance
hierarchy

– It may not have any subclasses

Example:

public final class Circle extends Shape

Circle.java (Page 1)

Circle.java (Page 2)

Circle.java (Page 3)

Circle.java (Page 4)

Rectangle.java (Page 1)

Rectangle.java (Page 2)

Rectangle.java (Page 3)

Rectangle.java (Page 4)

Rectangle.java (Page 5)

Rectangle.java (Page 6)

Shapes1.java

Shapes2.java

MiniQuiz No. 1—Part 1

Create a new final class Triangle that extends Shape with three instance variables
side1, side2 and side3

Write two constructors:

1. One passes default values zero (0) to the second constructor

2. The Triangle(int, int, int, int) constructor passes the point where it will draw to the
Shape superclass constructor and sets the three sides of the triangle

Write a set method for each data field which validates that a side is zero (0) or
greater

Write a get method for each data field

Write a method draw() that overrides the abstract method in Shape and that prints
the three sides of the triangle to the terminal window

MiniQuiz No. 1—Part 2

Update the “Shapes1.java” class file to instantiate an object t from the Triangle class
and then call its printIt() method

Update the “Shapes2.java” class file to instantiate a third element to the s array from
the Triangle constructor

A Student Hierarchy to Calculate Grades and Tuition

Student.java (Page 1)

Student.java (Page 2)

Student.java (Page 3)

Student.java (Page 4)

Student.java (Page 5)

Student.java (Page 6)

Student.java (Page 7)

Student.java (Page 8)

FemaleStudent.java

SuffolkResident.java (Page 1)

SuffolkResident.java (Page 2)

SuffolkResident.java (Page 3)

SuffolkResident.java (Page 4)

MaleSuffolkResident.java

NassauResident.java (Page 1)

NassauResident.java (Page 2)

NassauResident.java (Page 3)

NassauResident.java (Page 4)

NassauResident.java (Page 5)

NonResident.java (Page 1)

NonResident.java (Page 2)

NonResident.java (Page 3)

NonResident.java (Page 4)

NonResident.java (Page 5)

NonResident.java (Page 6)

AbstractsAndInterfaces1.java

ValidState.java (Page 1)

ValidState.java (Page 2)

ValidState.java (Page 3)

ValidState.java (Page 4)

SeniorCitizen.java (Page 1)

SeniorCitizen.java (Page 2)

SeniorCitizen.java (Page 3)

SeniorCitizen.java (Page 4)

AbstractsAndInterfaces1.java (Page 1)

AbstractsAndInterfaces1.java (Page 1)

Downcasting and Polymorphic Behavior (Page 1)

Casting a superclass reference to a subclass reference

Technique makes it possible to reference a subclass method from an object
instantiated from its superclass

Accomplished by casting the superclass object (superclass is the type) to the subclass
type (subclass is the constructor)

Downcasting and Polymorphic Behavior (Page 2)

Format:

SuperClassName object = new SubClassConstructor([args]);

– Possible only because the subclass is derived (extends from) from the superclass

Downcasting and Polymorphic Behavior (Page 3)

Example:

Student s = new SuffolkResident("Sally", "Walters", "Z", 7);

…

JOptionPane.showMessageDialog(null, s.getTuition())

– Calls getTuition() method of class SuffolkResident (not that of Student)

Subtyping1.java

Subtyping2.java (Page 1)

Subtyping2.java (Page 2)

Interfaces

Contains abstract method definitions needed by several classes and perhaps within
several class hierarchies

– An alternate to declaring them in a superclass

If a method is declared in an interface, all classes that “implement” the interface must
declare a method with the same signature

The Keyword interface

Used to declare an interface (replaces the keyword class in the header signature)

– As with a class name, the name of the interface must be identical to the “*.java”
filename

Example:

public interface Tuition

{

public abstract int getTuition();

}

– Filename for the above must be “Tuition.java”

Implementing Interfaces

Interfaces are not inherited in subclasses but rather they are implemented

Classes may implement several interfaces …

– Sort of like multiple inheritance …

– Unlike subclasses which may inherit (extend) from only one superclass

The Keyword implements

Used to implement an interface

Format:

public class ClassName [extends SuperClassName] implements InterfaceName1[,
InterfaceName2, …]

{ …

Example:

public class SuffolkResident extends Student implements Tuition

{ …

Declaring Constants in Interfaces (Page 1)

Besides method references, the only other elements that may be declared in
interfaces are constants

The constants can be accessed by all classes in which the interface is implemented

The constant identifier must be:

– Declared as final and may additionally be declared as static (they are static by
default)

– Assigned a value which may not change

Declaring Constants in Interfaces (Page 2)

Format:

[public] [static] [final] type CONSTANT_NAME = value;

Example:

public interface Tuition

{

static final int PT_TUITION = 105;

static final int FT_TUITION = 1175;

}

Interface Programming Practice (Page 1)

According to the “Java Language Specification”, in standard practice within an
interface:

– Methods are declared without the keywords public and abstract because these
specifications are redundant

– Constants are declared without the keywords public, static and final because they
also are redundant

Interface Programming Practice (Page 2)

Example:

public interface Tuition

{

int getTuition();

int PT_TUITION = 105;

int FT_TUITION = 1175;

}

Tuition.java

Mini-Quiz No. 2 (Part 1)

Find the values for “part-time” and “full-time” tuition in method getTuition() of
SuffolkResident, NassauResident, and NonResident classes

Substitute the PT_TUITION and FT_TUITION constants for each of the values

SuffolkResident.java (Page 1)

SuffolkResident.java (Page 3)

NassauResident.java (Page 1)

NassauResident.java (Page 3)

NonResident.java (Page 1)

NonResident.java (Page 3)

Mini-Quiz No. 2 (Part 2)

Go to the SCCC web site and find the correct current values for part-time and fulltime
tuition

Substitute those values in the Tuition interface

Tuition.java

FemaleNassauResident.java

Abstract Classes and Interfaces (Page 1)

A Java abstract class is a class which contains one or more abstract methods which
must be implemented by the subclasses

– May contain concrete methods

– Begins with the keyword “abstract” followed by the class definition

– Useful in situations when some general methods should be implemented in super
class and specialization behavior should be implemented by subclasses

– Can contain public, private and protected members

– Can have instance variables (interfaces cannot)

Abstract Classes and Interfaces (Page 2)

A Java interface may contain only method declarations and constants and does not
contain their implementation.

– Classes which implement the interface must provide the method definition for all
the methods present

– Begins with the keyword “interface”

– Useful in a situation when all its properties need to be implemented by subclasses

– Can only have public members

– All constants in an interface are by default public static final

Abstract Classes and Interfaces (Page 3)

An interface is also used in situations when a class needs to extend another class
apart from the abstract class

– In such situations it is not possible to have multiple inheritance of classes

– An interface on the other hand can be used when it is required to implement one or
more interfaces

– Abstract classes do not support multiple inheritance whereas an interface supports
“multiple inheritance”

Abstract Classes and Interfaces (Page 4)

Interfaces are slow as it requires extra indirection to find corresponding methods in
the actual class; abstract classes are fast

Interfaces are often used to describe the peripheral abilities of a class, not its central
identity

– E.g. Class “Automobile” might implement the interface “Recyclable” which could
apply to many otherwise totally unrelated objects

Abstract Classes and Interfaces (Page 5)

 There is no difference between a fully abstract class (all methods declared as
abstract and all fields are public static final) and an interface

 Neither abstract classes nor interfaces can be instantiated

Abstract Classes and Interfaces (Page 6)

 When to use which:

– If the various objects are all “of-a-kind” and share a common state and behavior,
then tend towards a common base (abstract) class

– If all they share is a set of method signatures, then tend towards an interface

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

Abstract Classes and Interfaces

CST141

Late Binding (Page 1)

Programmers should create systems (applications) that are easily extensible

– Capable of being extended—easy to add to later

Superclasses are designed as more general:

– Able to process existing as well as new subclasses

– Classes that are added later should not require modification to the general part of
the program (the superclass)

Late Binding (Page 2)

Late binding—a method from one class is not tied to method that calls it from another
class until run-time (when it is instantiated)

– Also called dynamic binding

– The opposite of early binding in which the methods of the two classes are compiled
together

Late binding makes it possible to add new classes to the hierarchy even after the base
class compiles

A Late Binding Example

Late Binding (Page 3)

Consider the Shape class example:

– Shape has:

•An attribute point where the shape starts to draw

•A method printIt() that “positions” a shape when drawn by calling a method
named position()

– Classes Circle and Rectangle both extend Shape

•Circle has attribute radius; Rectangle has attributes length and width

•Circle and radius have individual methods named draw() that “draw” the shapes,
both of which are called by the printIt() method of class Shape

A Late Binding Example

Late Binding (Page 4)

Consider the Shape class example (con):

– With early binding, if new class Triangle is created after Shape is compiled, method
draw() of either Circle or Rectangle will have been bound previously to printIt()

– With late binding (essentially the equivalent of polymorphism), method draw() of
Triangle (or Circle or Rectangle) correctly binds to printIt() at run-time

– Java uses late binding exclusively

A Late Binding Example

The Keyword abstract (Page 1)

Classes that are declared to be abstract cannot be instantiated …

– No objects may be created from it

This is true for a superclass that only has the function of supporting subclasses …

– Such classes are called abstract superclasses

The Keyword abstract (Page 2)

Example:

public abstract class Shape extends Object

Classes that may instantiate objects are called concrete classes

– E.g. the Circle, Rectangle and Triangle classes

Declaring abstract Methods (Page 1)

A method may be declared in a superclass declaration as abstract

As such the abstract method only may exist in an abstract class (or an interface)

Declaring abstract Methods (Page 2)

The declaration is only a reference since:

– It contains no statements

– Requires implementation of the abstract method in all of its subclasses

•So that required subclass methods are not forgotten

– Any call to the local abstract method is overridden because it will be handled by
methods of same name in the subclasses (uses redirection)

• In fact this is the only way that a superclass can call methods of its direct
subclass

Declaring abstract Methods (Page 3)

Format:

public abstract type/void methodName([parameterList]);

– The parameterList must match in number of variables and type the implemented
method

– Methods that are abstract may be overloaded

Example:

public abstract void draw();

– Note the placement of the semicolon (;) at end of the method header (signature)

Shape.java (Page 1)

Shape.java (Page 2)

Shape.java (Page 3)

Shape.java (Page 4)

The Keyword final

Used to indicate that the value of an identifier may not change after it has been
declared and initialized

– Often used for defining a constant

Example:

double final CREDITS = 7;

Declaring a Class as final

If a class is declared to be final, it must be the bottom class in an inheritance
hierarchy

– It may not have any subclasses

Example:

public final class Circle extends Shape

Circle.java (Page 1)

Circle.java (Page 2)

Circle.java (Page 3)

Circle.java (Page 4)

Rectangle.java (Page 1)

Rectangle.java (Page 2)

Rectangle.java (Page 3)

Rectangle.java (Page 4)

Rectangle.java (Page 5)

Rectangle.java (Page 6)

Shapes1.java

Shapes2.java

MiniQuiz No. 1—Part 1

Create a new final class Triangle that extends Shape with three instance variables
side1, side2 and side3

Write two constructors:

1. One passes default values zero (0) to the second constructor

2. The Triangle(int, int, int, int) constructor passes the point where it will draw to the
Shape superclass constructor and sets the three sides of the triangle

Write a set method for each data field which validates that a side is zero (0) or
greater

Write a get method for each data field

Write a method draw() that overrides the abstract method in Shape and that prints
the three sides of the triangle to the terminal window

MiniQuiz No. 1—Part 2

Update the “Shapes1.java” class file to instantiate an object t from the Triangle class
and then call its printIt() method

Update the “Shapes2.java” class file to instantiate a third element to the s array from
the Triangle constructor

A Student Hierarchy to Calculate Grades and Tuition

Student.java (Page 1)

Student.java (Page 2)

Student.java (Page 3)

Student.java (Page 4)

Student.java (Page 5)

Student.java (Page 6)

Student.java (Page 7)

Student.java (Page 8)

FemaleStudent.java

SuffolkResident.java (Page 1)

SuffolkResident.java (Page 2)

SuffolkResident.java (Page 3)

SuffolkResident.java (Page 4)

MaleSuffolkResident.java

NassauResident.java (Page 1)

NassauResident.java (Page 2)

NassauResident.java (Page 3)

NassauResident.java (Page 4)

NassauResident.java (Page 5)

NonResident.java (Page 1)

NonResident.java (Page 2)

NonResident.java (Page 3)

NonResident.java (Page 4)

NonResident.java (Page 5)

NonResident.java (Page 6)

AbstractsAndInterfaces1.java

ValidState.java (Page 1)

ValidState.java (Page 2)

ValidState.java (Page 3)

ValidState.java (Page 4)

SeniorCitizen.java (Page 1)

SeniorCitizen.java (Page 2)

SeniorCitizen.java (Page 3)

SeniorCitizen.java (Page 4)

AbstractsAndInterfaces1.java (Page 1)

AbstractsAndInterfaces1.java (Page 1)

Downcasting and Polymorphic Behavior (Page 1)

Casting a superclass reference to a subclass reference

Technique makes it possible to reference a subclass method from an object
instantiated from its superclass

Accomplished by casting the superclass object (superclass is the type) to the subclass
type (subclass is the constructor)

Downcasting and Polymorphic Behavior (Page 2)

Format:

SuperClassName object = new SubClassConstructor([args]);

– Possible only because the subclass is derived (extends from) from the superclass

Downcasting and Polymorphic Behavior (Page 3)

Example:

Student s = new SuffolkResident("Sally", "Walters", "Z", 7);

…

JOptionPane.showMessageDialog(null, s.getTuition())

– Calls getTuition() method of class SuffolkResident (not that of Student)

Subtyping1.java

Subtyping2.java (Page 1)

Subtyping2.java (Page 2)

Interfaces

Contains abstract method definitions needed by several classes and perhaps within
several class hierarchies

– An alternate to declaring them in a superclass

If a method is declared in an interface, all classes that “implement” the interface must
declare a method with the same signature

The Keyword interface

Used to declare an interface (replaces the keyword class in the header signature)

– As with a class name, the name of the interface must be identical to the “*.java”
filename

Example:

public interface Tuition

{

public abstract int getTuition();

}

– Filename for the above must be “Tuition.java”

Implementing Interfaces

Interfaces are not inherited in subclasses but rather they are implemented

Classes may implement several interfaces …

– Sort of like multiple inheritance …

– Unlike subclasses which may inherit (extend) from only one superclass

The Keyword implements

Used to implement an interface

Format:

public class ClassName [extends SuperClassName] implements InterfaceName1[,
InterfaceName2, …]

{ …

Example:

public class SuffolkResident extends Student implements Tuition

{ …

Declaring Constants in Interfaces (Page 1)

Besides method references, the only other elements that may be declared in
interfaces are constants

The constants can be accessed by all classes in which the interface is implemented

The constant identifier must be:

– Declared as final and may additionally be declared as static (they are static by
default)

– Assigned a value which may not change

Declaring Constants in Interfaces (Page 2)

Format:

[public] [static] [final] type CONSTANT_NAME = value;

Example:

public interface Tuition

{

static final int PT_TUITION = 105;

static final int FT_TUITION = 1175;

}

Interface Programming Practice (Page 1)

According to the “Java Language Specification”, in standard practice within an
interface:

– Methods are declared without the keywords public and abstract because these
specifications are redundant

– Constants are declared without the keywords public, static and final because they
also are redundant

Interface Programming Practice (Page 2)

Example:

public interface Tuition

{

int getTuition();

int PT_TUITION = 105;

int FT_TUITION = 1175;

}

Tuition.java

Mini-Quiz No. 2 (Part 1)

Find the values for “part-time” and “full-time” tuition in method getTuition() of
SuffolkResident, NassauResident, and NonResident classes

Substitute the PT_TUITION and FT_TUITION constants for each of the values

SuffolkResident.java (Page 1)

SuffolkResident.java (Page 3)

NassauResident.java (Page 1)

NassauResident.java (Page 3)

NonResident.java (Page 1)

NonResident.java (Page 3)

Mini-Quiz No. 2 (Part 2)

Go to the SCCC web site and find the correct current values for part-time and fulltime
tuition

Substitute those values in the Tuition interface

Tuition.java

FemaleNassauResident.java

Abstract Classes and Interfaces (Page 1)

A Java abstract class is a class which contains one or more abstract methods which
must be implemented by the subclasses

– May contain concrete methods

– Begins with the keyword “abstract” followed by the class definition

– Useful in situations when some general methods should be implemented in super
class and specialization behavior should be implemented by subclasses

– Can contain public, private and protected members

– Can have instance variables (interfaces cannot)

Abstract Classes and Interfaces (Page 2)

A Java interface may contain only method declarations and constants and does not
contain their implementation.

– Classes which implement the interface must provide the method definition for all
the methods present

– Begins with the keyword “interface”

– Useful in a situation when all its properties need to be implemented by subclasses

– Can only have public members

– All constants in an interface are by default public static final

Abstract Classes and Interfaces (Page 3)

An interface is also used in situations when a class needs to extend another class
apart from the abstract class

– In such situations it is not possible to have multiple inheritance of classes

– An interface on the other hand can be used when it is required to implement one or
more interfaces

– Abstract classes do not support multiple inheritance whereas an interface supports
“multiple inheritance”

Abstract Classes and Interfaces (Page 4)

Interfaces are slow as it requires extra indirection to find corresponding methods in
the actual class; abstract classes are fast

Interfaces are often used to describe the peripheral abilities of a class, not its central
identity

– E.g. Class “Automobile” might implement the interface “Recyclable” which could
apply to many otherwise totally unrelated objects

Abstract Classes and Interfaces (Page 5)

 There is no difference between a fully abstract class (all methods declared as
abstract and all fields are public static final) and an interface

 Neither abstract classes nor interfaces can be instantiated

Abstract Classes and Interfaces (Page 6)

 When to use which:

– If the various objects are all “of-a-kind” and share a common state and behavior,
then tend towards a common base (abstract) class

– If all they share is a set of method signatures, then tend towards an interface

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

CST141—Abstract Classes and Interfaces Page 3

Abstract Classes and Interfaces

CST141

Late Binding (Page 1)

Programmers should create systems (applications) that are easily extensible

– Capable of being extended—easy to add to later

Superclasses are designed as more general:

– Able to process existing as well as new subclasses

– Classes that are added later should not require modification to the general part of
the program (the superclass)

Late Binding (Page 2)

Late binding—a method from one class is not tied to method that calls it from another
class until run-time (when it is instantiated)

– Also called dynamic binding

– The opposite of early binding in which the methods of the two classes are compiled
together

Late binding makes it possible to add new classes to the hierarchy even after the base
class compiles

A Late Binding Example

Late Binding (Page 3)

Consider the Shape class example:

– Shape has:

•An attribute point where the shape starts to draw

•A method printIt() that “positions” a shape when drawn by calling a method
named position()

– Classes Circle and Rectangle both extend Shape

•Circle has attribute radius; Rectangle has attributes length and width

•Circle and radius have individual methods named draw() that “draw” the shapes,
both of which are called by the printIt() method of class Shape

A Late Binding Example

Late Binding (Page 4)

Consider the Shape class example (con):

– With early binding, if new class Triangle is created after Shape is compiled, method
draw() of either Circle or Rectangle will have been bound previously to printIt()

– With late binding (essentially the equivalent of polymorphism), method draw() of
Triangle (or Circle or Rectangle) correctly binds to printIt() at run-time

– Java uses late binding exclusively

A Late Binding Example

The Keyword abstract (Page 1)

Classes that are declared to be abstract cannot be instantiated …

– No objects may be created from it

This is true for a superclass that only has the function of supporting subclasses …

– Such classes are called abstract superclasses

The Keyword abstract (Page 2)

Example:

public abstract class Shape extends Object

Classes that may instantiate objects are called concrete classes

– E.g. the Circle, Rectangle and Triangle classes

Declaring abstract Methods (Page 1)

A method may be declared in a superclass declaration as abstract

As such the abstract method only may exist in an abstract class (or an interface)

Declaring abstract Methods (Page 2)

The declaration is only a reference since:

– It contains no statements

– Requires implementation of the abstract method in all of its subclasses

•So that required subclass methods are not forgotten

– Any call to the local abstract method is overridden because it will be handled by
methods of same name in the subclasses (uses redirection)

• In fact this is the only way that a superclass can call methods of its direct
subclass

Declaring abstract Methods (Page 3)

Format:

public abstract type/void methodName([parameterList]);

– The parameterList must match in number of variables and type the implemented
method

– Methods that are abstract may be overloaded

Example:

public abstract void draw();

– Note the placement of the semicolon (;) at end of the method header (signature)

Shape.java (Page 1)

Shape.java (Page 2)

Shape.java (Page 3)

Shape.java (Page 4)

The Keyword final

Used to indicate that the value of an identifier may not change after it has been
declared and initialized

– Often used for defining a constant

Example:

double final CREDITS = 7;

Declaring a Class as final

If a class is declared to be final, it must be the bottom class in an inheritance
hierarchy

– It may not have any subclasses

Example:

public final class Circle extends Shape

Circle.java (Page 1)

Circle.java (Page 2)

Circle.java (Page 3)

Circle.java (Page 4)

Rectangle.java (Page 1)

Rectangle.java (Page 2)

Rectangle.java (Page 3)

Rectangle.java (Page 4)

Rectangle.java (Page 5)

Rectangle.java (Page 6)

Shapes1.java

Shapes2.java

MiniQuiz No. 1—Part 1

Create a new final class Triangle that extends Shape with three instance variables
side1, side2 and side3

Write two constructors:

1. One passes default values zero (0) to the second constructor

2. The Triangle(int, int, int, int) constructor passes the point where it will draw to the
Shape superclass constructor and sets the three sides of the triangle

Write a set method for each data field which validates that a side is zero (0) or
greater

Write a get method for each data field

Write a method draw() that overrides the abstract method in Shape and that prints
the three sides of the triangle to the terminal window

MiniQuiz No. 1—Part 2

Update the “Shapes1.java” class file to instantiate an object t from the Triangle class
and then call its printIt() method

Update the “Shapes2.java” class file to instantiate a third element to the s array from
the Triangle constructor

A Student Hierarchy to Calculate Grades and Tuition

Student.java (Page 1)

Student.java (Page 2)

Student.java (Page 3)

Student.java (Page 4)

Student.java (Page 5)

Student.java (Page 6)

Student.java (Page 7)

Student.java (Page 8)

FemaleStudent.java

SuffolkResident.java (Page 1)

SuffolkResident.java (Page 2)

SuffolkResident.java (Page 3)

SuffolkResident.java (Page 4)

MaleSuffolkResident.java

NassauResident.java (Page 1)

NassauResident.java (Page 2)

NassauResident.java (Page 3)

NassauResident.java (Page 4)

NassauResident.java (Page 5)

NonResident.java (Page 1)

NonResident.java (Page 2)

NonResident.java (Page 3)

NonResident.java (Page 4)

NonResident.java (Page 5)

NonResident.java (Page 6)

AbstractsAndInterfaces1.java

ValidState.java (Page 1)

ValidState.java (Page 2)

ValidState.java (Page 3)

ValidState.java (Page 4)

SeniorCitizen.java (Page 1)

SeniorCitizen.java (Page 2)

SeniorCitizen.java (Page 3)

SeniorCitizen.java (Page 4)

AbstractsAndInterfaces1.java (Page 1)

AbstractsAndInterfaces1.java (Page 1)

Downcasting and Polymorphic Behavior (Page 1)

Casting a superclass reference to a subclass reference

Technique makes it possible to reference a subclass method from an object
instantiated from its superclass

Accomplished by casting the superclass object (superclass is the type) to the subclass
type (subclass is the constructor)

Downcasting and Polymorphic Behavior (Page 2)

Format:

SuperClassName object = new SubClassConstructor([args]);

– Possible only because the subclass is derived (extends from) from the superclass

Downcasting and Polymorphic Behavior (Page 3)

Example:

Student s = new SuffolkResident("Sally", "Walters", "Z", 7);

…

JOptionPane.showMessageDialog(null, s.getTuition())

– Calls getTuition() method of class SuffolkResident (not that of Student)

Subtyping1.java

Subtyping2.java (Page 1)

Subtyping2.java (Page 2)

Interfaces

Contains abstract method definitions needed by several classes and perhaps within
several class hierarchies

– An alternate to declaring them in a superclass

If a method is declared in an interface, all classes that “implement” the interface must
declare a method with the same signature

The Keyword interface

Used to declare an interface (replaces the keyword class in the header signature)

– As with a class name, the name of the interface must be identical to the “*.java”
filename

Example:

public interface Tuition

{

public abstract int getTuition();

}

– Filename for the above must be “Tuition.java”

Implementing Interfaces

Interfaces are not inherited in subclasses but rather they are implemented

Classes may implement several interfaces …

– Sort of like multiple inheritance …

– Unlike subclasses which may inherit (extend) from only one superclass

The Keyword implements

Used to implement an interface

Format:

public class ClassName [extends SuperClassName] implements InterfaceName1[,
InterfaceName2, …]

{ …

Example:

public class SuffolkResident extends Student implements Tuition

{ …

Declaring Constants in Interfaces (Page 1)

Besides method references, the only other elements that may be declared in
interfaces are constants

The constants can be accessed by all classes in which the interface is implemented

The constant identifier must be:

– Declared as final and may additionally be declared as static (they are static by
default)

– Assigned a value which may not change

Declaring Constants in Interfaces (Page 2)

Format:

[public] [static] [final] type CONSTANT_NAME = value;

Example:

public interface Tuition

{

static final int PT_TUITION = 105;

static final int FT_TUITION = 1175;

}

Interface Programming Practice (Page 1)

According to the “Java Language Specification”, in standard practice within an
interface:

– Methods are declared without the keywords public and abstract because these
specifications are redundant

– Constants are declared without the keywords public, static and final because they
also are redundant

Interface Programming Practice (Page 2)

Example:

public interface Tuition

{

int getTuition();

int PT_TUITION = 105;

int FT_TUITION = 1175;

}

Tuition.java

Mini-Quiz No. 2 (Part 1)

Find the values for “part-time” and “full-time” tuition in method getTuition() of
SuffolkResident, NassauResident, and NonResident classes

Substitute the PT_TUITION and FT_TUITION constants for each of the values

SuffolkResident.java (Page 1)

SuffolkResident.java (Page 3)

NassauResident.java (Page 1)

NassauResident.java (Page 3)

NonResident.java (Page 1)

NonResident.java (Page 3)

Mini-Quiz No. 2 (Part 2)

Go to the SCCC web site and find the correct current values for part-time and fulltime
tuition

Substitute those values in the Tuition interface

Tuition.java

FemaleNassauResident.java

Abstract Classes and Interfaces (Page 1)

A Java abstract class is a class which contains one or more abstract methods which
must be implemented by the subclasses

– May contain concrete methods

– Begins with the keyword “abstract” followed by the class definition

– Useful in situations when some general methods should be implemented in super
class and specialization behavior should be implemented by subclasses

– Can contain public, private and protected members

– Can have instance variables (interfaces cannot)

Abstract Classes and Interfaces (Page 2)

A Java interface may contain only method declarations and constants and does not
contain their implementation.

– Classes which implement the interface must provide the method definition for all
the methods present

– Begins with the keyword “interface”

– Useful in a situation when all its properties need to be implemented by subclasses

– Can only have public members

– All constants in an interface are by default public static final

Abstract Classes and Interfaces (Page 3)

An interface is also used in situations when a class needs to extend another class
apart from the abstract class

– In such situations it is not possible to have multiple inheritance of classes

– An interface on the other hand can be used when it is required to implement one or
more interfaces

– Abstract classes do not support multiple inheritance whereas an interface supports
“multiple inheritance”

Abstract Classes and Interfaces (Page 4)

Interfaces are slow as it requires extra indirection to find corresponding methods in
the actual class; abstract classes are fast

Interfaces are often used to describe the peripheral abilities of a class, not its central
identity

– E.g. Class “Automobile” might implement the interface “Recyclable” which could
apply to many otherwise totally unrelated objects

Abstract Classes and Interfaces (Page 5)

 There is no difference between a fully abstract class (all methods declared as
abstract and all fields are public static final) and an interface

 Neither abstract classes nor interfaces can be instantiated

Abstract Classes and Interfaces (Page 6)

 When to use which:

– If the various objects are all “of-a-kind” and share a common state and behavior,
then tend towards a common base (abstract) class

– If all they share is a set of method signatures, then tend towards an interface

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

Abstract Classes and Interfaces

CST141

Late Binding (Page 1)

Programmers should create systems (applications) that are easily extensible

– Capable of being extended—easy to add to later

Superclasses are designed as more general:

– Able to process existing as well as new subclasses

– Classes that are added later should not require modification to the general part of
the program (the superclass)

Late Binding (Page 2)

Late binding—a method from one class is not tied to method that calls it from another
class until run-time (when it is instantiated)

– Also called dynamic binding

– The opposite of early binding in which the methods of the two classes are compiled
together

Late binding makes it possible to add new classes to the hierarchy even after the base
class compiles

A Late Binding Example

Late Binding (Page 3)

Consider the Shape class example:

– Shape has:

•An attribute point where the shape starts to draw

•A method printIt() that “positions” a shape when drawn by calling a method
named position()

– Classes Circle and Rectangle both extend Shape

•Circle has attribute radius; Rectangle has attributes length and width

•Circle and radius have individual methods named draw() that “draw” the shapes,
both of which are called by the printIt() method of class Shape

A Late Binding Example

Late Binding (Page 4)

Consider the Shape class example (con):

– With early binding, if new class Triangle is created after Shape is compiled, method
draw() of either Circle or Rectangle will have been bound previously to printIt()

– With late binding (essentially the equivalent of polymorphism), method draw() of
Triangle (or Circle or Rectangle) correctly binds to printIt() at run-time

– Java uses late binding exclusively

A Late Binding Example

The Keyword abstract (Page 1)

Classes that are declared to be abstract cannot be instantiated …

– No objects may be created from it

This is true for a superclass that only has the function of supporting subclasses …

– Such classes are called abstract superclasses

The Keyword abstract (Page 2)

Example:

public abstract class Shape extends Object

Classes that may instantiate objects are called concrete classes

– E.g. the Circle, Rectangle and Triangle classes

Declaring abstract Methods (Page 1)

A method may be declared in a superclass declaration as abstract

As such the abstract method only may exist in an abstract class (or an interface)

Declaring abstract Methods (Page 2)

The declaration is only a reference since:

– It contains no statements

– Requires implementation of the abstract method in all of its subclasses

•So that required subclass methods are not forgotten

– Any call to the local abstract method is overridden because it will be handled by
methods of same name in the subclasses (uses redirection)

• In fact this is the only way that a superclass can call methods of its direct
subclass

Declaring abstract Methods (Page 3)

Format:

public abstract type/void methodName([parameterList]);

– The parameterList must match in number of variables and type the implemented
method

– Methods that are abstract may be overloaded

Example:

public abstract void draw();

– Note the placement of the semicolon (;) at end of the method header (signature)

Shape.java (Page 1)

Shape.java (Page 2)

Shape.java (Page 3)

Shape.java (Page 4)

The Keyword final

Used to indicate that the value of an identifier may not change after it has been
declared and initialized

– Often used for defining a constant

Example:

double final CREDITS = 7;

Declaring a Class as final

If a class is declared to be final, it must be the bottom class in an inheritance
hierarchy

– It may not have any subclasses

Example:

public final class Circle extends Shape

Circle.java (Page 1)

Circle.java (Page 2)

Circle.java (Page 3)

Circle.java (Page 4)

Rectangle.java (Page 1)

Rectangle.java (Page 2)

Rectangle.java (Page 3)

Rectangle.java (Page 4)

Rectangle.java (Page 5)

Rectangle.java (Page 6)

Shapes1.java

Shapes2.java

MiniQuiz No. 1—Part 1

Create a new final class Triangle that extends Shape with three instance variables
side1, side2 and side3

Write two constructors:

1. One passes default values zero (0) to the second constructor

2. The Triangle(int, int, int, int) constructor passes the point where it will draw to the
Shape superclass constructor and sets the three sides of the triangle

Write a set method for each data field which validates that a side is zero (0) or
greater

Write a get method for each data field

Write a method draw() that overrides the abstract method in Shape and that prints
the three sides of the triangle to the terminal window

MiniQuiz No. 1—Part 2

Update the “Shapes1.java” class file to instantiate an object t from the Triangle class
and then call its printIt() method

Update the “Shapes2.java” class file to instantiate a third element to the s array from
the Triangle constructor

A Student Hierarchy to Calculate Grades and Tuition

Student.java (Page 1)

Student.java (Page 2)

Student.java (Page 3)

Student.java (Page 4)

Student.java (Page 5)

Student.java (Page 6)

Student.java (Page 7)

Student.java (Page 8)

FemaleStudent.java

SuffolkResident.java (Page 1)

SuffolkResident.java (Page 2)

SuffolkResident.java (Page 3)

SuffolkResident.java (Page 4)

MaleSuffolkResident.java

NassauResident.java (Page 1)

NassauResident.java (Page 2)

NassauResident.java (Page 3)

NassauResident.java (Page 4)

NassauResident.java (Page 5)

NonResident.java (Page 1)

NonResident.java (Page 2)

NonResident.java (Page 3)

NonResident.java (Page 4)

NonResident.java (Page 5)

NonResident.java (Page 6)

AbstractsAndInterfaces1.java

ValidState.java (Page 1)

ValidState.java (Page 2)

ValidState.java (Page 3)

ValidState.java (Page 4)

SeniorCitizen.java (Page 1)

SeniorCitizen.java (Page 2)

SeniorCitizen.java (Page 3)

SeniorCitizen.java (Page 4)

AbstractsAndInterfaces1.java (Page 1)

AbstractsAndInterfaces1.java (Page 1)

Downcasting and Polymorphic Behavior (Page 1)

Casting a superclass reference to a subclass reference

Technique makes it possible to reference a subclass method from an object
instantiated from its superclass

Accomplished by casting the superclass object (superclass is the type) to the subclass
type (subclass is the constructor)

Downcasting and Polymorphic Behavior (Page 2)

Format:

SuperClassName object = new SubClassConstructor([args]);

– Possible only because the subclass is derived (extends from) from the superclass

Downcasting and Polymorphic Behavior (Page 3)

Example:

Student s = new SuffolkResident("Sally", "Walters", "Z", 7);

…

JOptionPane.showMessageDialog(null, s.getTuition())

– Calls getTuition() method of class SuffolkResident (not that of Student)

Subtyping1.java

Subtyping2.java (Page 1)

Subtyping2.java (Page 2)

Interfaces

Contains abstract method definitions needed by several classes and perhaps within
several class hierarchies

– An alternate to declaring them in a superclass

If a method is declared in an interface, all classes that “implement” the interface must
declare a method with the same signature

The Keyword interface

Used to declare an interface (replaces the keyword class in the header signature)

– As with a class name, the name of the interface must be identical to the “*.java”
filename

Example:

public interface Tuition

{

public abstract int getTuition();

}

– Filename for the above must be “Tuition.java”

Implementing Interfaces

Interfaces are not inherited in subclasses but rather they are implemented

Classes may implement several interfaces …

– Sort of like multiple inheritance …

– Unlike subclasses which may inherit (extend) from only one superclass

The Keyword implements

Used to implement an interface

Format:

public class ClassName [extends SuperClassName] implements InterfaceName1[,
InterfaceName2, …]

{ …

Example:

public class SuffolkResident extends Student implements Tuition

{ …

Declaring Constants in Interfaces (Page 1)

Besides method references, the only other elements that may be declared in
interfaces are constants

The constants can be accessed by all classes in which the interface is implemented

The constant identifier must be:

– Declared as final and may additionally be declared as static (they are static by
default)

– Assigned a value which may not change

Declaring Constants in Interfaces (Page 2)

Format:

[public] [static] [final] type CONSTANT_NAME = value;

Example:

public interface Tuition

{

static final int PT_TUITION = 105;

static final int FT_TUITION = 1175;

}

Interface Programming Practice (Page 1)

According to the “Java Language Specification”, in standard practice within an
interface:

– Methods are declared without the keywords public and abstract because these
specifications are redundant

– Constants are declared without the keywords public, static and final because they
also are redundant

Interface Programming Practice (Page 2)

Example:

public interface Tuition

{

int getTuition();

int PT_TUITION = 105;

int FT_TUITION = 1175;

}

Tuition.java

Mini-Quiz No. 2 (Part 1)

Find the values for “part-time” and “full-time” tuition in method getTuition() of
SuffolkResident, NassauResident, and NonResident classes

Substitute the PT_TUITION and FT_TUITION constants for each of the values

SuffolkResident.java (Page 1)

SuffolkResident.java (Page 3)

NassauResident.java (Page 1)

NassauResident.java (Page 3)

NonResident.java (Page 1)

NonResident.java (Page 3)

Mini-Quiz No. 2 (Part 2)

Go to the SCCC web site and find the correct current values for part-time and fulltime
tuition

Substitute those values in the Tuition interface

Tuition.java

FemaleNassauResident.java

Abstract Classes and Interfaces (Page 1)

A Java abstract class is a class which contains one or more abstract methods which
must be implemented by the subclasses

– May contain concrete methods

– Begins with the keyword “abstract” followed by the class definition

– Useful in situations when some general methods should be implemented in super
class and specialization behavior should be implemented by subclasses

– Can contain public, private and protected members

– Can have instance variables (interfaces cannot)

Abstract Classes and Interfaces (Page 2)

A Java interface may contain only method declarations and constants and does not
contain their implementation.

– Classes which implement the interface must provide the method definition for all
the methods present

– Begins with the keyword “interface”

– Useful in a situation when all its properties need to be implemented by subclasses

– Can only have public members

– All constants in an interface are by default public static final

Abstract Classes and Interfaces (Page 3)

An interface is also used in situations when a class needs to extend another class
apart from the abstract class

– In such situations it is not possible to have multiple inheritance of classes

– An interface on the other hand can be used when it is required to implement one or
more interfaces

– Abstract classes do not support multiple inheritance whereas an interface supports
“multiple inheritance”

Abstract Classes and Interfaces (Page 4)

Interfaces are slow as it requires extra indirection to find corresponding methods in
the actual class; abstract classes are fast

Interfaces are often used to describe the peripheral abilities of a class, not its central
identity

– E.g. Class “Automobile” might implement the interface “Recyclable” which could
apply to many otherwise totally unrelated objects

Abstract Classes and Interfaces (Page 5)

 There is no difference between a fully abstract class (all methods declared as
abstract and all fields are public static final) and an interface

 Neither abstract classes nor interfaces can be instantiated

Abstract Classes and Interfaces (Page 6)

 When to use which:

– If the various objects are all “of-a-kind” and share a common state and behavior,
then tend towards a common base (abstract) class

– If all they share is a set of method signatures, then tend towards an interface

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

CST141—Abstract Classes and Interfaces Page 4

Abstract Classes and Interfaces

CST141

Late Binding (Page 1)

Programmers should create systems (applications) that are easily extensible

– Capable of being extended—easy to add to later

Superclasses are designed as more general:

– Able to process existing as well as new subclasses

– Classes that are added later should not require modification to the general part of
the program (the superclass)

Late Binding (Page 2)

Late binding—a method from one class is not tied to method that calls it from another
class until run-time (when it is instantiated)

– Also called dynamic binding

– The opposite of early binding in which the methods of the two classes are compiled
together

Late binding makes it possible to add new classes to the hierarchy even after the base
class compiles

A Late Binding Example

Late Binding (Page 3)

Consider the Shape class example:

– Shape has:

•An attribute point where the shape starts to draw

•A method printIt() that “positions” a shape when drawn by calling a method
named position()

– Classes Circle and Rectangle both extend Shape

•Circle has attribute radius; Rectangle has attributes length and width

•Circle and radius have individual methods named draw() that “draw” the shapes,
both of which are called by the printIt() method of class Shape

A Late Binding Example

Late Binding (Page 4)

Consider the Shape class example (con):

– With early binding, if new class Triangle is created after Shape is compiled, method
draw() of either Circle or Rectangle will have been bound previously to printIt()

– With late binding (essentially the equivalent of polymorphism), method draw() of
Triangle (or Circle or Rectangle) correctly binds to printIt() at run-time

– Java uses late binding exclusively

A Late Binding Example

The Keyword abstract (Page 1)

Classes that are declared to be abstract cannot be instantiated …

– No objects may be created from it

This is true for a superclass that only has the function of supporting subclasses …

– Such classes are called abstract superclasses

The Keyword abstract (Page 2)

Example:

public abstract class Shape extends Object

Classes that may instantiate objects are called concrete classes

– E.g. the Circle, Rectangle and Triangle classes

Declaring abstract Methods (Page 1)

A method may be declared in a superclass declaration as abstract

As such the abstract method only may exist in an abstract class (or an interface)

Declaring abstract Methods (Page 2)

The declaration is only a reference since:

– It contains no statements

– Requires implementation of the abstract method in all of its subclasses

•So that required subclass methods are not forgotten

– Any call to the local abstract method is overridden because it will be handled by
methods of same name in the subclasses (uses redirection)

• In fact this is the only way that a superclass can call methods of its direct
subclass

Declaring abstract Methods (Page 3)

Format:

public abstract type/void methodName([parameterList]);

– The parameterList must match in number of variables and type the implemented
method

– Methods that are abstract may be overloaded

Example:

public abstract void draw();

– Note the placement of the semicolon (;) at end of the method header (signature)

Shape.java (Page 1)

Shape.java (Page 2)

Shape.java (Page 3)

Shape.java (Page 4)

The Keyword final

Used to indicate that the value of an identifier may not change after it has been
declared and initialized

– Often used for defining a constant

Example:

double final CREDITS = 7;

Declaring a Class as final

If a class is declared to be final, it must be the bottom class in an inheritance
hierarchy

– It may not have any subclasses

Example:

public final class Circle extends Shape

Circle.java (Page 1)

Circle.java (Page 2)

Circle.java (Page 3)

Circle.java (Page 4)

Rectangle.java (Page 1)

Rectangle.java (Page 2)

Rectangle.java (Page 3)

Rectangle.java (Page 4)

Rectangle.java (Page 5)

Rectangle.java (Page 6)

Shapes1.java

Shapes2.java

MiniQuiz No. 1—Part 1

Create a new final class Triangle that extends Shape with three instance variables
side1, side2 and side3

Write two constructors:

1. One passes default values zero (0) to the second constructor

2. The Triangle(int, int, int, int) constructor passes the point where it will draw to the
Shape superclass constructor and sets the three sides of the triangle

Write a set method for each data field which validates that a side is zero (0) or
greater

Write a get method for each data field

Write a method draw() that overrides the abstract method in Shape and that prints
the three sides of the triangle to the terminal window

MiniQuiz No. 1—Part 2

Update the “Shapes1.java” class file to instantiate an object t from the Triangle class
and then call its printIt() method

Update the “Shapes2.java” class file to instantiate a third element to the s array from
the Triangle constructor

A Student Hierarchy to Calculate Grades and Tuition

Student.java (Page 1)

Student.java (Page 2)

Student.java (Page 3)

Student.java (Page 4)

Student.java (Page 5)

Student.java (Page 6)

Student.java (Page 7)

Student.java (Page 8)

FemaleStudent.java

SuffolkResident.java (Page 1)

SuffolkResident.java (Page 2)

SuffolkResident.java (Page 3)

SuffolkResident.java (Page 4)

MaleSuffolkResident.java

NassauResident.java (Page 1)

NassauResident.java (Page 2)

NassauResident.java (Page 3)

NassauResident.java (Page 4)

NassauResident.java (Page 5)

NonResident.java (Page 1)

NonResident.java (Page 2)

NonResident.java (Page 3)

NonResident.java (Page 4)

NonResident.java (Page 5)

NonResident.java (Page 6)

AbstractsAndInterfaces1.java

ValidState.java (Page 1)

ValidState.java (Page 2)

ValidState.java (Page 3)

ValidState.java (Page 4)

SeniorCitizen.java (Page 1)

SeniorCitizen.java (Page 2)

SeniorCitizen.java (Page 3)

SeniorCitizen.java (Page 4)

AbstractsAndInterfaces1.java (Page 1)

AbstractsAndInterfaces1.java (Page 1)

Downcasting and Polymorphic Behavior (Page 1)

Casting a superclass reference to a subclass reference

Technique makes it possible to reference a subclass method from an object
instantiated from its superclass

Accomplished by casting the superclass object (superclass is the type) to the subclass
type (subclass is the constructor)

Downcasting and Polymorphic Behavior (Page 2)

Format:

SuperClassName object = new SubClassConstructor([args]);

– Possible only because the subclass is derived (extends from) from the superclass

Downcasting and Polymorphic Behavior (Page 3)

Example:

Student s = new SuffolkResident("Sally", "Walters", "Z", 7);

…

JOptionPane.showMessageDialog(null, s.getTuition())

– Calls getTuition() method of class SuffolkResident (not that of Student)

Subtyping1.java

Subtyping2.java (Page 1)

Subtyping2.java (Page 2)

Interfaces

Contains abstract method definitions needed by several classes and perhaps within
several class hierarchies

– An alternate to declaring them in a superclass

If a method is declared in an interface, all classes that “implement” the interface must
declare a method with the same signature

The Keyword interface

Used to declare an interface (replaces the keyword class in the header signature)

– As with a class name, the name of the interface must be identical to the “*.java”
filename

Example:

public interface Tuition

{

public abstract int getTuition();

}

– Filename for the above must be “Tuition.java”

Implementing Interfaces

Interfaces are not inherited in subclasses but rather they are implemented

Classes may implement several interfaces …

– Sort of like multiple inheritance …

– Unlike subclasses which may inherit (extend) from only one superclass

The Keyword implements

Used to implement an interface

Format:

public class ClassName [extends SuperClassName] implements InterfaceName1[,
InterfaceName2, …]

{ …

Example:

public class SuffolkResident extends Student implements Tuition

{ …

Declaring Constants in Interfaces (Page 1)

Besides method references, the only other elements that may be declared in
interfaces are constants

The constants can be accessed by all classes in which the interface is implemented

The constant identifier must be:

– Declared as final and may additionally be declared as static (they are static by
default)

– Assigned a value which may not change

Declaring Constants in Interfaces (Page 2)

Format:

[public] [static] [final] type CONSTANT_NAME = value;

Example:

public interface Tuition

{

static final int PT_TUITION = 105;

static final int FT_TUITION = 1175;

}

Interface Programming Practice (Page 1)

According to the “Java Language Specification”, in standard practice within an
interface:

– Methods are declared without the keywords public and abstract because these
specifications are redundant

– Constants are declared without the keywords public, static and final because they
also are redundant

Interface Programming Practice (Page 2)

Example:

public interface Tuition

{

int getTuition();

int PT_TUITION = 105;

int FT_TUITION = 1175;

}

Tuition.java

Mini-Quiz No. 2 (Part 1)

Find the values for “part-time” and “full-time” tuition in method getTuition() of
SuffolkResident, NassauResident, and NonResident classes

Substitute the PT_TUITION and FT_TUITION constants for each of the values

SuffolkResident.java (Page 1)

SuffolkResident.java (Page 3)

NassauResident.java (Page 1)

NassauResident.java (Page 3)

NonResident.java (Page 1)

NonResident.java (Page 3)

Mini-Quiz No. 2 (Part 2)

Go to the SCCC web site and find the correct current values for part-time and fulltime
tuition

Substitute those values in the Tuition interface

Tuition.java

FemaleNassauResident.java

Abstract Classes and Interfaces (Page 1)

A Java abstract class is a class which contains one or more abstract methods which
must be implemented by the subclasses

– May contain concrete methods

– Begins with the keyword “abstract” followed by the class definition

– Useful in situations when some general methods should be implemented in super
class and specialization behavior should be implemented by subclasses

– Can contain public, private and protected members

– Can have instance variables (interfaces cannot)

Abstract Classes and Interfaces (Page 2)

A Java interface may contain only method declarations and constants and does not
contain their implementation.

– Classes which implement the interface must provide the method definition for all
the methods present

– Begins with the keyword “interface”

– Useful in a situation when all its properties need to be implemented by subclasses

– Can only have public members

– All constants in an interface are by default public static final

Abstract Classes and Interfaces (Page 3)

An interface is also used in situations when a class needs to extend another class
apart from the abstract class

– In such situations it is not possible to have multiple inheritance of classes

– An interface on the other hand can be used when it is required to implement one or
more interfaces

– Abstract classes do not support multiple inheritance whereas an interface supports
“multiple inheritance”

Abstract Classes and Interfaces (Page 4)

Interfaces are slow as it requires extra indirection to find corresponding methods in
the actual class; abstract classes are fast

Interfaces are often used to describe the peripheral abilities of a class, not its central
identity

– E.g. Class “Automobile” might implement the interface “Recyclable” which could
apply to many otherwise totally unrelated objects

Abstract Classes and Interfaces (Page 5)

 There is no difference between a fully abstract class (all methods declared as
abstract and all fields are public static final) and an interface

 Neither abstract classes nor interfaces can be instantiated

Abstract Classes and Interfaces (Page 6)

 When to use which:

– If the various objects are all “of-a-kind” and share a common state and behavior,
then tend towards a common base (abstract) class

– If all they share is a set of method signatures, then tend towards an interface

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

Abstract Classes and Interfaces

CST141

Late Binding (Page 1)

Programmers should create systems (applications) that are easily extensible

– Capable of being extended—easy to add to later

Superclasses are designed as more general:

– Able to process existing as well as new subclasses

– Classes that are added later should not require modification to the general part of
the program (the superclass)

Late Binding (Page 2)

Late binding—a method from one class is not tied to method that calls it from another
class until run-time (when it is instantiated)

– Also called dynamic binding

– The opposite of early binding in which the methods of the two classes are compiled
together

Late binding makes it possible to add new classes to the hierarchy even after the base
class compiles

A Late Binding Example

Late Binding (Page 3)

Consider the Shape class example:

– Shape has:

•An attribute point where the shape starts to draw

•A method printIt() that “positions” a shape when drawn by calling a method
named position()

– Classes Circle and Rectangle both extend Shape

•Circle has attribute radius; Rectangle has attributes length and width

•Circle and radius have individual methods named draw() that “draw” the shapes,
both of which are called by the printIt() method of class Shape

A Late Binding Example

Late Binding (Page 4)

Consider the Shape class example (con):

– With early binding, if new class Triangle is created after Shape is compiled, method
draw() of either Circle or Rectangle will have been bound previously to printIt()

– With late binding (essentially the equivalent of polymorphism), method draw() of
Triangle (or Circle or Rectangle) correctly binds to printIt() at run-time

– Java uses late binding exclusively

A Late Binding Example

The Keyword abstract (Page 1)

Classes that are declared to be abstract cannot be instantiated …

– No objects may be created from it

This is true for a superclass that only has the function of supporting subclasses …

– Such classes are called abstract superclasses

The Keyword abstract (Page 2)

Example:

public abstract class Shape extends Object

Classes that may instantiate objects are called concrete classes

– E.g. the Circle, Rectangle and Triangle classes

Declaring abstract Methods (Page 1)

A method may be declared in a superclass declaration as abstract

As such the abstract method only may exist in an abstract class (or an interface)

Declaring abstract Methods (Page 2)

The declaration is only a reference since:

– It contains no statements

– Requires implementation of the abstract method in all of its subclasses

•So that required subclass methods are not forgotten

– Any call to the local abstract method is overridden because it will be handled by
methods of same name in the subclasses (uses redirection)

• In fact this is the only way that a superclass can call methods of its direct
subclass

Declaring abstract Methods (Page 3)

Format:

public abstract type/void methodName([parameterList]);

– The parameterList must match in number of variables and type the implemented
method

– Methods that are abstract may be overloaded

Example:

public abstract void draw();

– Note the placement of the semicolon (;) at end of the method header (signature)

Shape.java (Page 1)

Shape.java (Page 2)

Shape.java (Page 3)

Shape.java (Page 4)

The Keyword final

Used to indicate that the value of an identifier may not change after it has been
declared and initialized

– Often used for defining a constant

Example:

double final CREDITS = 7;

Declaring a Class as final

If a class is declared to be final, it must be the bottom class in an inheritance
hierarchy

– It may not have any subclasses

Example:

public final class Circle extends Shape

Circle.java (Page 1)

Circle.java (Page 2)

Circle.java (Page 3)

Circle.java (Page 4)

Rectangle.java (Page 1)

Rectangle.java (Page 2)

Rectangle.java (Page 3)

Rectangle.java (Page 4)

Rectangle.java (Page 5)

Rectangle.java (Page 6)

Shapes1.java

Shapes2.java

MiniQuiz No. 1—Part 1

Create a new final class Triangle that extends Shape with three instance variables
side1, side2 and side3

Write two constructors:

1. One passes default values zero (0) to the second constructor

2. The Triangle(int, int, int, int) constructor passes the point where it will draw to the
Shape superclass constructor and sets the three sides of the triangle

Write a set method for each data field which validates that a side is zero (0) or
greater

Write a get method for each data field

Write a method draw() that overrides the abstract method in Shape and that prints
the three sides of the triangle to the terminal window

MiniQuiz No. 1—Part 2

Update the “Shapes1.java” class file to instantiate an object t from the Triangle class
and then call its printIt() method

Update the “Shapes2.java” class file to instantiate a third element to the s array from
the Triangle constructor

A Student Hierarchy to Calculate Grades and Tuition

Student.java (Page 1)

Student.java (Page 2)

Student.java (Page 3)

Student.java (Page 4)

Student.java (Page 5)

Student.java (Page 6)

Student.java (Page 7)

Student.java (Page 8)

FemaleStudent.java

SuffolkResident.java (Page 1)

SuffolkResident.java (Page 2)

SuffolkResident.java (Page 3)

SuffolkResident.java (Page 4)

MaleSuffolkResident.java

NassauResident.java (Page 1)

NassauResident.java (Page 2)

NassauResident.java (Page 3)

NassauResident.java (Page 4)

NassauResident.java (Page 5)

NonResident.java (Page 1)

NonResident.java (Page 2)

NonResident.java (Page 3)

NonResident.java (Page 4)

NonResident.java (Page 5)

NonResident.java (Page 6)

AbstractsAndInterfaces1.java

ValidState.java (Page 1)

ValidState.java (Page 2)

ValidState.java (Page 3)

ValidState.java (Page 4)

SeniorCitizen.java (Page 1)

SeniorCitizen.java (Page 2)

SeniorCitizen.java (Page 3)

SeniorCitizen.java (Page 4)

AbstractsAndInterfaces1.java (Page 1)

AbstractsAndInterfaces1.java (Page 1)

Downcasting and Polymorphic Behavior (Page 1)

Casting a superclass reference to a subclass reference

Technique makes it possible to reference a subclass method from an object
instantiated from its superclass

Accomplished by casting the superclass object (superclass is the type) to the subclass
type (subclass is the constructor)

Downcasting and Polymorphic Behavior (Page 2)

Format:

SuperClassName object = new SubClassConstructor([args]);

– Possible only because the subclass is derived (extends from) from the superclass

Downcasting and Polymorphic Behavior (Page 3)

Example:

Student s = new SuffolkResident("Sally", "Walters", "Z", 7);

…

JOptionPane.showMessageDialog(null, s.getTuition())

– Calls getTuition() method of class SuffolkResident (not that of Student)

Subtyping1.java

Subtyping2.java (Page 1)

Subtyping2.java (Page 2)

Interfaces

Contains abstract method definitions needed by several classes and perhaps within
several class hierarchies

– An alternate to declaring them in a superclass

If a method is declared in an interface, all classes that “implement” the interface must
declare a method with the same signature

The Keyword interface

Used to declare an interface (replaces the keyword class in the header signature)

– As with a class name, the name of the interface must be identical to the “*.java”
filename

Example:

public interface Tuition

{

public abstract int getTuition();

}

– Filename for the above must be “Tuition.java”

Implementing Interfaces

Interfaces are not inherited in subclasses but rather they are implemented

Classes may implement several interfaces …

– Sort of like multiple inheritance …

– Unlike subclasses which may inherit (extend) from only one superclass

The Keyword implements

Used to implement an interface

Format:

public class ClassName [extends SuperClassName] implements InterfaceName1[,
InterfaceName2, …]

{ …

Example:

public class SuffolkResident extends Student implements Tuition

{ …

Declaring Constants in Interfaces (Page 1)

Besides method references, the only other elements that may be declared in
interfaces are constants

The constants can be accessed by all classes in which the interface is implemented

The constant identifier must be:

– Declared as final and may additionally be declared as static (they are static by
default)

– Assigned a value which may not change

Declaring Constants in Interfaces (Page 2)

Format:

[public] [static] [final] type CONSTANT_NAME = value;

Example:

public interface Tuition

{

static final int PT_TUITION = 105;

static final int FT_TUITION = 1175;

}

Interface Programming Practice (Page 1)

According to the “Java Language Specification”, in standard practice within an
interface:

– Methods are declared without the keywords public and abstract because these
specifications are redundant

– Constants are declared without the keywords public, static and final because they
also are redundant

Interface Programming Practice (Page 2)

Example:

public interface Tuition

{

int getTuition();

int PT_TUITION = 105;

int FT_TUITION = 1175;

}

Tuition.java

Mini-Quiz No. 2 (Part 1)

Find the values for “part-time” and “full-time” tuition in method getTuition() of
SuffolkResident, NassauResident, and NonResident classes

Substitute the PT_TUITION and FT_TUITION constants for each of the values

SuffolkResident.java (Page 1)

SuffolkResident.java (Page 3)

NassauResident.java (Page 1)

NassauResident.java (Page 3)

NonResident.java (Page 1)

NonResident.java (Page 3)

Mini-Quiz No. 2 (Part 2)

Go to the SCCC web site and find the correct current values for part-time and fulltime
tuition

Substitute those values in the Tuition interface

Tuition.java

FemaleNassauResident.java

Abstract Classes and Interfaces (Page 1)

A Java abstract class is a class which contains one or more abstract methods which
must be implemented by the subclasses

– May contain concrete methods

– Begins with the keyword “abstract” followed by the class definition

– Useful in situations when some general methods should be implemented in super
class and specialization behavior should be implemented by subclasses

– Can contain public, private and protected members

– Can have instance variables (interfaces cannot)

Abstract Classes and Interfaces (Page 2)

A Java interface may contain only method declarations and constants and does not
contain their implementation.

– Classes which implement the interface must provide the method definition for all
the methods present

– Begins with the keyword “interface”

– Useful in a situation when all its properties need to be implemented by subclasses

– Can only have public members

– All constants in an interface are by default public static final

Abstract Classes and Interfaces (Page 3)

An interface is also used in situations when a class needs to extend another class
apart from the abstract class

– In such situations it is not possible to have multiple inheritance of classes

– An interface on the other hand can be used when it is required to implement one or
more interfaces

– Abstract classes do not support multiple inheritance whereas an interface supports
“multiple inheritance”

Abstract Classes and Interfaces (Page 4)

Interfaces are slow as it requires extra indirection to find corresponding methods in
the actual class; abstract classes are fast

Interfaces are often used to describe the peripheral abilities of a class, not its central
identity

– E.g. Class “Automobile” might implement the interface “Recyclable” which could
apply to many otherwise totally unrelated objects

Abstract Classes and Interfaces (Page 5)

 There is no difference between a fully abstract class (all methods declared as
abstract and all fields are public static final) and an interface

 Neither abstract classes nor interfaces can be instantiated

Abstract Classes and Interfaces (Page 6)

 When to use which:

– If the various objects are all “of-a-kind” and share a common state and behavior,
then tend towards a common base (abstract) class

– If all they share is a set of method signatures, then tend towards an interface

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

CST141—Abstract Classes and Interfaces Page 5

Abstract Classes and Interfaces

CST141

Late Binding (Page 1)

Programmers should create systems (applications) that are easily extensible

– Capable of being extended—easy to add to later

Superclasses are designed as more general:

– Able to process existing as well as new subclasses

– Classes that are added later should not require modification to the general part of
the program (the superclass)

Late Binding (Page 2)

Late binding—a method from one class is not tied to method that calls it from another
class until run-time (when it is instantiated)

– Also called dynamic binding

– The opposite of early binding in which the methods of the two classes are compiled
together

Late binding makes it possible to add new classes to the hierarchy even after the base
class compiles

A Late Binding Example

Late Binding (Page 3)

Consider the Shape class example:

– Shape has:

•An attribute point where the shape starts to draw

•A method printIt() that “positions” a shape when drawn by calling a method
named position()

– Classes Circle and Rectangle both extend Shape

•Circle has attribute radius; Rectangle has attributes length and width

•Circle and radius have individual methods named draw() that “draw” the shapes,
both of which are called by the printIt() method of class Shape

A Late Binding Example

Late Binding (Page 4)

Consider the Shape class example (con):

– With early binding, if new class Triangle is created after Shape is compiled, method
draw() of either Circle or Rectangle will have been bound previously to printIt()

– With late binding (essentially the equivalent of polymorphism), method draw() of
Triangle (or Circle or Rectangle) correctly binds to printIt() at run-time

– Java uses late binding exclusively

A Late Binding Example

The Keyword abstract (Page 1)

Classes that are declared to be abstract cannot be instantiated …

– No objects may be created from it

This is true for a superclass that only has the function of supporting subclasses …

– Such classes are called abstract superclasses

The Keyword abstract (Page 2)

Example:

public abstract class Shape extends Object

Classes that may instantiate objects are called concrete classes

– E.g. the Circle, Rectangle and Triangle classes

Declaring abstract Methods (Page 1)

A method may be declared in a superclass declaration as abstract

As such the abstract method only may exist in an abstract class (or an interface)

Declaring abstract Methods (Page 2)

The declaration is only a reference since:

– It contains no statements

– Requires implementation of the abstract method in all of its subclasses

•So that required subclass methods are not forgotten

– Any call to the local abstract method is overridden because it will be handled by
methods of same name in the subclasses (uses redirection)

• In fact this is the only way that a superclass can call methods of its direct
subclass

Declaring abstract Methods (Page 3)

Format:

public abstract type/void methodName([parameterList]);

– The parameterList must match in number of variables and type the implemented
method

– Methods that are abstract may be overloaded

Example:

public abstract void draw();

– Note the placement of the semicolon (;) at end of the method header (signature)

Shape.java (Page 1)

Shape.java (Page 2)

Shape.java (Page 3)

Shape.java (Page 4)

The Keyword final

Used to indicate that the value of an identifier may not change after it has been
declared and initialized

– Often used for defining a constant

Example:

double final CREDITS = 7;

Declaring a Class as final

If a class is declared to be final, it must be the bottom class in an inheritance
hierarchy

– It may not have any subclasses

Example:

public final class Circle extends Shape

Circle.java (Page 1)

Circle.java (Page 2)

Circle.java (Page 3)

Circle.java (Page 4)

Rectangle.java (Page 1)

Rectangle.java (Page 2)

Rectangle.java (Page 3)

Rectangle.java (Page 4)

Rectangle.java (Page 5)

Rectangle.java (Page 6)

Shapes1.java

Shapes2.java

MiniQuiz No. 1—Part 1

Create a new final class Triangle that extends Shape with three instance variables
side1, side2 and side3

Write two constructors:

1. One passes default values zero (0) to the second constructor

2. The Triangle(int, int, int, int) constructor passes the point where it will draw to the
Shape superclass constructor and sets the three sides of the triangle

Write a set method for each data field which validates that a side is zero (0) or
greater

Write a get method for each data field

Write a method draw() that overrides the abstract method in Shape and that prints
the three sides of the triangle to the terminal window

MiniQuiz No. 1—Part 2

Update the “Shapes1.java” class file to instantiate an object t from the Triangle class
and then call its printIt() method

Update the “Shapes2.java” class file to instantiate a third element to the s array from
the Triangle constructor

A Student Hierarchy to Calculate Grades and Tuition

Student.java (Page 1)

Student.java (Page 2)

Student.java (Page 3)

Student.java (Page 4)

Student.java (Page 5)

Student.java (Page 6)

Student.java (Page 7)

Student.java (Page 8)

FemaleStudent.java

SuffolkResident.java (Page 1)

SuffolkResident.java (Page 2)

SuffolkResident.java (Page 3)

SuffolkResident.java (Page 4)

MaleSuffolkResident.java

NassauResident.java (Page 1)

NassauResident.java (Page 2)

NassauResident.java (Page 3)

NassauResident.java (Page 4)

NassauResident.java (Page 5)

NonResident.java (Page 1)

NonResident.java (Page 2)

NonResident.java (Page 3)

NonResident.java (Page 4)

NonResident.java (Page 5)

NonResident.java (Page 6)

AbstractsAndInterfaces1.java

ValidState.java (Page 1)

ValidState.java (Page 2)

ValidState.java (Page 3)

ValidState.java (Page 4)

SeniorCitizen.java (Page 1)

SeniorCitizen.java (Page 2)

SeniorCitizen.java (Page 3)

SeniorCitizen.java (Page 4)

AbstractsAndInterfaces1.java (Page 1)

AbstractsAndInterfaces1.java (Page 1)

Downcasting and Polymorphic Behavior (Page 1)

Casting a superclass reference to a subclass reference

Technique makes it possible to reference a subclass method from an object
instantiated from its superclass

Accomplished by casting the superclass object (superclass is the type) to the subclass
type (subclass is the constructor)

Downcasting and Polymorphic Behavior (Page 2)

Format:

SuperClassName object = new SubClassConstructor([args]);

– Possible only because the subclass is derived (extends from) from the superclass

Downcasting and Polymorphic Behavior (Page 3)

Example:

Student s = new SuffolkResident("Sally", "Walters", "Z", 7);

…

JOptionPane.showMessageDialog(null, s.getTuition())

– Calls getTuition() method of class SuffolkResident (not that of Student)

Subtyping1.java

Subtyping2.java (Page 1)

Subtyping2.java (Page 2)

Interfaces

Contains abstract method definitions needed by several classes and perhaps within
several class hierarchies

– An alternate to declaring them in a superclass

If a method is declared in an interface, all classes that “implement” the interface must
declare a method with the same signature

The Keyword interface

Used to declare an interface (replaces the keyword class in the header signature)

– As with a class name, the name of the interface must be identical to the “*.java”
filename

Example:

public interface Tuition

{

public abstract int getTuition();

}

– Filename for the above must be “Tuition.java”

Implementing Interfaces

Interfaces are not inherited in subclasses but rather they are implemented

Classes may implement several interfaces …

– Sort of like multiple inheritance …

– Unlike subclasses which may inherit (extend) from only one superclass

The Keyword implements

Used to implement an interface

Format:

public class ClassName [extends SuperClassName] implements InterfaceName1[,
InterfaceName2, …]

{ …

Example:

public class SuffolkResident extends Student implements Tuition

{ …

Declaring Constants in Interfaces (Page 1)

Besides method references, the only other elements that may be declared in
interfaces are constants

The constants can be accessed by all classes in which the interface is implemented

The constant identifier must be:

– Declared as final and may additionally be declared as static (they are static by
default)

– Assigned a value which may not change

Declaring Constants in Interfaces (Page 2)

Format:

[public] [static] [final] type CONSTANT_NAME = value;

Example:

public interface Tuition

{

static final int PT_TUITION = 105;

static final int FT_TUITION = 1175;

}

Interface Programming Practice (Page 1)

According to the “Java Language Specification”, in standard practice within an
interface:

– Methods are declared without the keywords public and abstract because these
specifications are redundant

– Constants are declared without the keywords public, static and final because they
also are redundant

Interface Programming Practice (Page 2)

Example:

public interface Tuition

{

int getTuition();

int PT_TUITION = 105;

int FT_TUITION = 1175;

}

Tuition.java

Mini-Quiz No. 2 (Part 1)

Find the values for “part-time” and “full-time” tuition in method getTuition() of
SuffolkResident, NassauResident, and NonResident classes

Substitute the PT_TUITION and FT_TUITION constants for each of the values

SuffolkResident.java (Page 1)

SuffolkResident.java (Page 3)

NassauResident.java (Page 1)

NassauResident.java (Page 3)

NonResident.java (Page 1)

NonResident.java (Page 3)

Mini-Quiz No. 2 (Part 2)

Go to the SCCC web site and find the correct current values for part-time and fulltime
tuition

Substitute those values in the Tuition interface

Tuition.java

FemaleNassauResident.java

Abstract Classes and Interfaces (Page 1)

A Java abstract class is a class which contains one or more abstract methods which
must be implemented by the subclasses

– May contain concrete methods

– Begins with the keyword “abstract” followed by the class definition

– Useful in situations when some general methods should be implemented in super
class and specialization behavior should be implemented by subclasses

– Can contain public, private and protected members

– Can have instance variables (interfaces cannot)

Abstract Classes and Interfaces (Page 2)

A Java interface may contain only method declarations and constants and does not
contain their implementation.

– Classes which implement the interface must provide the method definition for all
the methods present

– Begins with the keyword “interface”

– Useful in a situation when all its properties need to be implemented by subclasses

– Can only have public members

– All constants in an interface are by default public static final

Abstract Classes and Interfaces (Page 3)

An interface is also used in situations when a class needs to extend another class
apart from the abstract class

– In such situations it is not possible to have multiple inheritance of classes

– An interface on the other hand can be used when it is required to implement one or
more interfaces

– Abstract classes do not support multiple inheritance whereas an interface supports
“multiple inheritance”

Abstract Classes and Interfaces (Page 4)

Interfaces are slow as it requires extra indirection to find corresponding methods in
the actual class; abstract classes are fast

Interfaces are often used to describe the peripheral abilities of a class, not its central
identity

– E.g. Class “Automobile” might implement the interface “Recyclable” which could
apply to many otherwise totally unrelated objects

Abstract Classes and Interfaces (Page 5)

 There is no difference between a fully abstract class (all methods declared as
abstract and all fields are public static final) and an interface

 Neither abstract classes nor interfaces can be instantiated

Abstract Classes and Interfaces (Page 6)

 When to use which:

– If the various objects are all “of-a-kind” and share a common state and behavior,
then tend towards a common base (abstract) class

– If all they share is a set of method signatures, then tend towards an interface

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

