
CST141—Binary I/O Page 1

Binary I/O

CST141

Binary Data

All data is stored in computers in binary format

– All ones (1) and zeros (0)

Text (including digits) is converted to some coding scheme (ASCII, Unicode, etc.)

Binary does not require conversions—the binary numeric value is written directly to the
file

InputStream and OutputStream

These are the abstract classes from which all binary input and output classes extend

An especially good example of inheritance from the Java API

All methods from all subclasses throw the checked IOException (or one of its
subclasses) which must be caught

– Must be imported from java.io

The Binary I/O Classes

The FileInputStream Class (Page 1)

Used for creating input streams that read only positive byte numeric data from a file

A subclass of InputStream

– Inherits the read() method that reads one byte of data to the stream

Located in the java.io package

import java.io.FileInputStream;

The FileInputStream Class (Page 2)

Format:

FileInputStream fileInputStreamObject = new FileInputStream("path/filename");

Throws a java.io.FileNotFoundException if the file does not exist

Throws a java.io.DirectoryNotFoundException if the folder on the drivedoes not exist

Examples:

FileInputStream input = new FileInputStream("temp.dat");

The FileOutputStream Class (Page 1)

Used for creating output stream objects that write only positive byte numeric data to a
file

A subclass of OutputStream

– Inherits the write() method that writes one byte of data to the stream

Located in the java.io package

import java.io.FileOutputStream;

The FileOutputStream Class (Page 2)

Format:

FileOutputStream fileOutputStreamObject = new FileOutputStream("path/filename");

Examples:

FileOutputStream input = new FileOutputStream("temp.dat");

The read() Method

A method of class FileInputStream (inherited from FileStream) that reads the next byte
of data from the input stream—from the file)

Format:

fileInputStreamObject.read();

Example:

byte credits = input.read();

The write() Method

A method of class FileInputStream (inherited from FileStream) that writes a specified
byte of data to the output stream—to the file)

Format:

fileOutputStreamObject.write(byteValue);

Example:

output.write(credits);

FileIO.java (Page 1)

FileIO.java (Page 2)

FileIO.java (Page 3)

FileIO.java (Page 4)

FileIO.java (Page 5)

FileIO.java (Page 6)

Filter Streams

The FilterInputStream and FilterOutputStream classes filter streams filter bytes for
some purpose

Subclasses of these two classes read and write integers, floats, strings, characters and
booleans

The DataInputStream Class (Page 1)

“Wraps” around a FileInputStream object to give it the ability to read integers, floats,
strings, booleans and characters

A subclass of FilterInputStream

Located in the java.io package

import java.io.DataInputStream;

The DataInputStream Class (Page 2)

Format:

DataInputStream dataInputStreamObject = new
DataInputStream(fileInputStreamObject);

Example:

DataInputStream input = new DataInputStream(new FileInputStream("temp.dat"));

The DataOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to give it the ability to write integers,
floats, strings, booleans and characters

A subclass of FilterOutputStream

Located in the java.io package

import java.io.DataOutputStream;

The DataOutputStream Class (Page 2)

Format:

DataOutputStream dataInputStreamObject = new
DataOutputStream(fileOutputStreamObject);

Example:

DataOutputStream input = new DataOutputStream(new FileOutputStream(
"temp.dat"));

Primitive Read Methods for Class DataInputStream (Page 1)

Reads primitives including integers, floats, booleans and characters from the input
stream—from a file):

– readByte()

– readChar()

– readFloat()

– readDouble()

– readInt()

– readLong()

– readShort()

– readBoolean()

Primitive Read Methods for Class DataInputStream (Page 2)

Format:

dataInputStreamObject.readPrimitive();

Example:

int credits = input.readInt();

The readUTF() Method

A method of class DataInputStream that reads a series of bytes from the input stream
that are in UTF-8 format and converts them into a string

Format:

dataInputStreamObject.readUTF();

Example:

String firstName = input.readUTF();

Primitive Write Methods for Class DataOutputStream (Page 1)

Writes primitives including integers, floats, booleans and characters to the output
stream—to a file):

– writeByte()

– writeChar()

– writeFloat()

– writeDouble()

– writeInt()

– writeLong()

– writeShort()

– writeBoolean()

Primitive Write Methods for Class DataOutputStream (Page 2)

Format:

dataOutputStreamObject.writePrimitive();

Example:

output.writeInt(credits);

The writeUTF() Method

A method of class DataInputString that converts a series of bytes into a string (UTF-8
format) and writes them into the output stream

Format:

dataInputStreamObject.readUTF();

Example:

ouput.readUTF(firstName);

DataIOStream.java (Page 1)

DataIOStream.java (Page 2)

DataIOStream.java (Page 3)

DataIOStream.java (Page 4)

DataIOStream.java (Page 5)

DataIOStream.java (Page 6)

Mini-Quiz No. 1 (Page 1)

Create a new BlueJ project named “binary-miniquizzes” and create a class named
“BinaryMiniQuiz1”

– Create a static void method output() and instantiate object variable output from
class DataOutputStream

– Use a for loop to iterate three times and get input from method showInputDialog()
for three fields

•productID—an int

• item—a String

•price—a double

– Write the three fields to the output object

BinaryMiniQuiz1.java (Page 1)

BinaryMiniQuiz1.java (Page 2)

Mini-Quiz No. 1 (Page 2)

Create a new BlueJ project named “binary-miniquizzes” and create a class named
“BinaryMiniQuiz1” (con):

– Create a static void method input() and instantiate an object variable input from
class DataInputStream

– Use a for loop to iterate through and read the three fields for all records from the
input object into a StringBuilder object with appropriate labels (see example above)

– Display all the data in a showMessageDialog()

BinaryMiniQuiz1.java (Page 3)

The BufferedInputStream Class (Page 1)

“Wraps” around a FileInputStream object to speed up input by reducing the number of
disk reads

The whole block of data is read into the RAM buffer at once

The BufferedInputStream Class (Page 2)

A subclass of FilterInputStream

It has no methods of its own—all are inherited from InputStream

Located in the java.io package

import java.io.BufferedInputStream;

The BufferedInputStream Class (Page 3)

Format:

BufferedInputStream bufferedInputStreamObject = new BufferedInputStream(
fileInputStreamObject);

Example:

BufferedInputStream input = new BufferedInputStream(new FileInputStream(
"temp.dat"));

The BufferedInputStream Class (Page 4)

A DataInputStream can be “wrapped” around the BufferedInputStream to provide
functionality for reading primitives and strings:

DataInputStream dataInputStreamObject = new DataOutputStream(new
BufferedInputStream(fileInputStreamObject));

Example:

DataInputStream input = new DataInputStream(new BufferedInputStream(new
FileInputStream("temp.dat")));

The BufferedOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to speed up output by reducing the number
of disk writes

The whole block of data first is written into the RAM buffer; when the buffer is full, the
block is written to disk

The BufferedOutputStream Class (Page 2)

A subclass of FilterOutputStream

It has no methods of its own—all are inherited from OutputStream

Located in the java.io package

import java.io.BufferedOutputStream;

The BufferedOutputStream Class (Page 3)

Format:

BufferedOutputStream bufferedOutputStreamObject = new BufferedOutputStream(
fileOutputStreamObject);

Example:

BufferedOutputStream output = new BufferedOutputStream(new FileOutputStream(
"temp.dat"));

The BufferedOutputStream Class (Page 4)

A DataOutputStream can be “wrapped” around the BufferedOutputStream to provide
functionality to write primitives and strings:

DataOutputStream dataOutputStreamObject = new DataOutputStream(new
BufferedOutputStream(fileOutputStreamObject));

Example:

DataOutputStream input = new DataOutputStream(new BufferedOutputStream(new
FileOutputStream("temp.dat")));

BufferedIOStream.java (Page 1)

BufferedIOStream.java (Page 2)

BufferedIOStream.java (Page 3)

BufferedIOStream.java (Page 4)

BufferedIOStream.java (Page 5)

BufferedIOStream.java (Page 6)

The ObjectInputStream Class (Page 1)

“Wraps” around a FileInputStream object to give it the ability to read “serializable”
objects from the input stream

Reads primitives and strings as well (contains all the methods of class
DataInputStream)

Located in the java.io package

import java.io.ObjectInputStream;

The ObjectInputStream Class (Page 2)

Format:

ObjectInputStream objectInputStreamObject = new ObjectInputStream(
fileInputStreamObject);

Example:

ObjectInputStream input = new ObjectInputStream(new FileInputStream(
"temp.dat"));

The ObjectOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to give it the ability to write “serializable”
objects to the output stream

Writes primitives and strings as well (contains all the methods of class
DataOutputStream)

Located in the java.io package

import java.io.ObjectOutputStream;

The ObjectOutputStream Class (Page 2)

Format:

ObjectOutputStream objectOutputStreamObject = new ObjectOutputStream(
fileOutputStreamObject);

Example:

ObjectOutputStream input = new ObjectOutputStream(new FileOutputStream(
"temp.dat"));

The readObject() Method

A method of class ObjectInputStream that reads a “serializable” object from the input
stream

May throw a ClassNotFoundException because when the JVM restores the object, it
must first load the class into RAM

Format:

objectInputStreamObject.readObject ();

Example:

SuffolkResident student = input.readObject();

The writeObject() Method

A method of class ObjectInputString that writes a “serializable” object into the output
stream

Format:

objectOutputStreamObject.writeObject(object);

Example:

output.writeObject(new SuffolkResident());

ObjectIOStream.java (Page 1)

ObjectIOStream.java (Page 2)

ObjectIOStream.java (Page 3)

ObjectIOStream.java (Page 4)

ObjectIOStream.java (Page 5)

ObjectIOStream.java (Page 6)

Mini-Quiz No. 2 (Page 1)

Open the BlueJ project “binary-miniquizzes” and create a class named
“BinaryMiniQuiz2”:

– Create a static void method output() and instantiate object variable output from
class ObjectOutputStream

– Instantiate an object from class StringBuilder

– Get input from method showInputDialog() for three fields

•productID—an int

• item—a String

•price—a double

– Write the input fields to the StringBuilder object with labels (see example above)

– Write the StringBuilder object to the output file

BinaryMiniQuiz2.java (Page 1)

BinaryMiniQuiz2.java (Page 2)

Mini-Quiz No. 2 (Page 2)

Open the BlueJ project “binary-miniquizzes” and create a class named
“BinaryMiniQuiz2” (con):

– Create a static void method input() and instantiate an object variable input from
class ObjectInputStream

– Read the StringBuilder object and display all the data in a showMessageDialog()

BinaryMiniQuiz2.java (Page 3)

The Serializable Interface (Page 1)

Objects that can be written to the output stream are said to serializable

– Classes from which such objects are instantiated implement the Serializable
interface

To store an object, the JVM must store:

– The class name and its signature

– All current property (data field) values of the class and its superclasses

This process, called object serialization, is implemented in ObjectDataStream objects

Java API “StringBuilder”

The Serializable Interface (Page 2)

Format:

public class ClassName [extends ClassName] implements Serializable

{ …

Example:

public class Student extends Object implements Serializable

{ …

BinaryMiniQuiz2.java (Page 1)

Serializing Arrays (Page 1)

If all elements of an array are serializable, the array is serializable

An array can be saved using writeObject() and restored using readObject()

– Recall that arrays are objects

Serializing Arrays (Page 2)

Format for readObject():

type[] arrayObject = (castType[]) objectInputStreamObject.readObject();

– Method returns an object so it must be cast to the array object type

Example:

SuffolkResident[] student = (SuffolkResident[]) input.readObject();

Serializing Arrays (Page 3)

Format for writeObject():

objectInputStreamObject.readObject(arrayObject);

Example:

SuffolkResident[] student = new SuffolkResident[3];

…

output.writeObject(student);

Random Access Files (Page 1)

Refers to ability to access records from a data file at random

– The opposite of random access is sequential access in which data must be accessed
by passing through all intervening points

Enables reading or writing information from or to any point in the file

– In a sequential-access file, must be accessed starting from the beginning of the file

Random Access Files

Random Access Files (Page 2)

Disks are random access media

– Tapes are sequential access media

Sometimes also called direct access

The RandomAccessFile Class (Page 1)

Objects instantiated from this class have the ability to read and write randomly

Similar to FileWriter and FileReader in that a file can be specified on the system to
open when it is created it

– Use either “path/filename” string or File object

The RandomAccessFile Class (Page 2)

When opening a RandomAccessFile, indicate whether file just will be read from (“r”) or
also written to (“rw”)

– Must be able to read a file in order to write it

Located in the java.io package

import java.io.RandomAccessFile;

The RandomAccessFile Class (Page 3)

Format:

RandomAccessFile randomAccessObject = new RandomAccessFile("path/filename" |
fileObject, "r"/"rw");

– The strings “r” or “rw” are the access methods

Example:

RandomAccessFile studentFile = new RandomAccessFile("e:/studentFile.dat", "rw");

Random Access File Processing (Page 1)

After a random file is open, common read and write methods are defined in the
DataInput and DataOutput interfaces to perform I/O

– Class RandomAccessFile implements both DataInput and DataOutput

Random Access File Processing (Page 2)

For example:

– The writeInt() writes four bytes of numeric integer data to the file

– The readInt() reads four bytes of numeric integer data from the file

There are write and read methods for every primitive data type

The File Pointer

RandomAccessFile supports the notion of a file pointer:

– Indicates the current location in the file

– When the file is first created or opened, the file pointer is set to zero (0), indicating
the beginning of the file

– Calls to read and write methods advances the file pointer by the number of bytes
read or written

FilesStreams8.java (Page 1)

FilesStreams8.java (Page 2)

The seek() Method (Page 1)

A method of the RandomAccessFile class that sets moves the file-pointer position

– Measured in bytes from the beginning of file

– The location at which the next read or write operation will begin

The offset position often is calculated based upon which record is to be accessed next

The seek() Method (Page 2)

Format:

randomAccessObject.seek(long);

– long is a long integer value or variable, or an arithmetic expression that evaluates to
a long

Examples:

studentFile.seek(4);

studentFile.seek(4 * (courseNumber - 1));

The Data

The Index

FilesStreams9.java (Page 1)

FilesStreams9.java (Page 2)

FilesStreams9.java (Page 3)

FilesStreams10.java (Page 1)

FilesStreams10.java (Page 2)

FilesStreams10.java (Page 3)

The Data

Record Size

The Index

The length() Method for a RandomAccessFile Object

For a RandomAccessFile object, returns the length of the file measured in bytes

Format:

randomAccessFileName.length();

Example:

studentFile.seek(studentFile.length());

FilesStreams11.java (Page 1)

FilesStreams11.java (Page 2)

FilesStreams11.java (Page 3)

FilesStreams12.java (Page 1)

FilesStreams12.java (Page 2)

FilesStreams12.java (Page 3)

The readChar() Method for a RandomAccessFile Object

Reads a single character from an object instantiated from class RandomAccessFile

Format:

randomAccessFileObject.readChar();

Example:

chars[ctr] = inFile.readChar();

The getChars() Method for a String Object (Page 1)

Copies characters from String into a destination char array

Format:

stringObject.getChars(srcBegin, srcEnd, dest, destBegin);

– srcBegin—index of the first character to copy

– srcEnd—index after the last character to copy

– dest—the destination char array

– destBegin—start offset in destination char array

The getChars() Method for a String Object (Page 2)

Format:

stringObject.getChars(srcBegin, srcEnd, dest, destBegin);

Example:

outString.getChars(0, length, chars, 0);

– The variable chars is a char array

The writeChars() Method for a RandomAccessFile Object (Page 1)

Writes a String to as RandomAccessFile as a sequence of characters …

– Each character is written separately to the data output stream as though were being
written by the writeChar() method contained within a loop

The write operation starts at the current position of the file pointer

The writeChars() Method for a RandomAccessFile Object (Page 2)

Format:

randomAccessFileName.writeChars(String);

Example:

outFile.writeChars(new String(chars));

– The variable chars is a char array and String is a call to String constructor that takes
a char array

The DataInput and DataOutput Interfaces (Page 1)

DataInput—an interface that implements the reading bytes from a binary stream

– The bytes may be reconstructed into any of the Java primitive types

DataOutput—an interface that implements the writing bytes to a binary stream

– Data converted from any of the Java primitive types back to a series of bytes

The DataInput and DataOutput Interfaces (Page 2)

The RandomAccessFile class implements both the DataInput and DataOutput
interfaces

– Therefore a RandomAccessFile object “is a” DataInput object and “is a” DataOutput
object

Subtyping allows RandomAccessFile objects to be “assigned” to a DataInput or
DataOutput object

Found in the java.io package

import java.io.DataInput;

import java.io.DataOutput;

The DataInput and DataOutput Interfaces (Page 3)

Examples:

DataOutput courseFile = new RandomAccessFile("courseFile.dat", "rw")

– Subtyping when instantiating a RandomAccessFile object variable

public static String readFixedLengthString(int size, DataInput inFile)

– Subtyping when passing a RandomAccessFile object to a parameter variable

FixedLengthStringIO.java (Page 1)

FixedLengthStringIO.java (Page 2)

FixedLengthStringIO.java (Page 3)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

Binary I/O

CST141

Binary Data

All data is stored in computers in binary format

– All ones (1) and zeros (0)

Text (including digits) is converted to some coding scheme (ASCII, Unicode, etc.)

Binary does not require conversions—the binary numeric value is written directly to the
file

InputStream and OutputStream

These are the abstract classes from which all binary input and output classes extend

An especially good example of inheritance from the Java API

All methods from all subclasses throw the checked IOException (or one of its
subclasses) which must be caught

– Must be imported from java.io

The Binary I/O Classes

The FileInputStream Class (Page 1)

Used for creating input streams that read only positive byte numeric data from a file

A subclass of InputStream

– Inherits the read() method that reads one byte of data to the stream

Located in the java.io package

import java.io.FileInputStream;

The FileInputStream Class (Page 2)

Format:

FileInputStream fileInputStreamObject = new FileInputStream("path/filename");

Throws a java.io.FileNotFoundException if the file does not exist

Throws a java.io.DirectoryNotFoundException if the folder on the drivedoes not exist

Examples:

FileInputStream input = new FileInputStream("temp.dat");

The FileOutputStream Class (Page 1)

Used for creating output stream objects that write only positive byte numeric data to a
file

A subclass of OutputStream

– Inherits the write() method that writes one byte of data to the stream

Located in the java.io package

import java.io.FileOutputStream;

The FileOutputStream Class (Page 2)

Format:

FileOutputStream fileOutputStreamObject = new FileOutputStream("path/filename");

Examples:

FileOutputStream input = new FileOutputStream("temp.dat");

The read() Method

A method of class FileInputStream (inherited from FileStream) that reads the next byte
of data from the input stream—from the file)

Format:

fileInputStreamObject.read();

Example:

byte credits = input.read();

The write() Method

A method of class FileInputStream (inherited from FileStream) that writes a specified
byte of data to the output stream—to the file)

Format:

fileOutputStreamObject.write(byteValue);

Example:

output.write(credits);

FileIO.java (Page 1)

FileIO.java (Page 2)

FileIO.java (Page 3)

FileIO.java (Page 4)

FileIO.java (Page 5)

FileIO.java (Page 6)

Filter Streams

The FilterInputStream and FilterOutputStream classes filter streams filter bytes for
some purpose

Subclasses of these two classes read and write integers, floats, strings, characters and
booleans

The DataInputStream Class (Page 1)

“Wraps” around a FileInputStream object to give it the ability to read integers, floats,
strings, booleans and characters

A subclass of FilterInputStream

Located in the java.io package

import java.io.DataInputStream;

The DataInputStream Class (Page 2)

Format:

DataInputStream dataInputStreamObject = new
DataInputStream(fileInputStreamObject);

Example:

DataInputStream input = new DataInputStream(new FileInputStream("temp.dat"));

The DataOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to give it the ability to write integers,
floats, strings, booleans and characters

A subclass of FilterOutputStream

Located in the java.io package

import java.io.DataOutputStream;

The DataOutputStream Class (Page 2)

Format:

DataOutputStream dataInputStreamObject = new
DataOutputStream(fileOutputStreamObject);

Example:

DataOutputStream input = new DataOutputStream(new FileOutputStream(
"temp.dat"));

Primitive Read Methods for Class DataInputStream (Page 1)

Reads primitives including integers, floats, booleans and characters from the input
stream—from a file):

– readByte()

– readChar()

– readFloat()

– readDouble()

– readInt()

– readLong()

– readShort()

– readBoolean()

Primitive Read Methods for Class DataInputStream (Page 2)

Format:

dataInputStreamObject.readPrimitive();

Example:

int credits = input.readInt();

The readUTF() Method

A method of class DataInputStream that reads a series of bytes from the input stream
that are in UTF-8 format and converts them into a string

Format:

dataInputStreamObject.readUTF();

Example:

String firstName = input.readUTF();

Primitive Write Methods for Class DataOutputStream (Page 1)

Writes primitives including integers, floats, booleans and characters to the output
stream—to a file):

– writeByte()

– writeChar()

– writeFloat()

– writeDouble()

– writeInt()

– writeLong()

– writeShort()

– writeBoolean()

Primitive Write Methods for Class DataOutputStream (Page 2)

Format:

dataOutputStreamObject.writePrimitive();

Example:

output.writeInt(credits);

The writeUTF() Method

A method of class DataInputString that converts a series of bytes into a string (UTF-8
format) and writes them into the output stream

Format:

dataInputStreamObject.readUTF();

Example:

ouput.readUTF(firstName);

DataIOStream.java (Page 1)

DataIOStream.java (Page 2)

DataIOStream.java (Page 3)

DataIOStream.java (Page 4)

DataIOStream.java (Page 5)

DataIOStream.java (Page 6)

Mini-Quiz No. 1 (Page 1)

Create a new BlueJ project named “binary-miniquizzes” and create a class named
“BinaryMiniQuiz1”

– Create a static void method output() and instantiate object variable output from
class DataOutputStream

– Use a for loop to iterate three times and get input from method showInputDialog()
for three fields

•productID—an int

• item—a String

•price—a double

– Write the three fields to the output object

BinaryMiniQuiz1.java (Page 1)

BinaryMiniQuiz1.java (Page 2)

Mini-Quiz No. 1 (Page 2)

Create a new BlueJ project named “binary-miniquizzes” and create a class named
“BinaryMiniQuiz1” (con):

– Create a static void method input() and instantiate an object variable input from
class DataInputStream

– Use a for loop to iterate through and read the three fields for all records from the
input object into a StringBuilder object with appropriate labels (see example above)

– Display all the data in a showMessageDialog()

BinaryMiniQuiz1.java (Page 3)

The BufferedInputStream Class (Page 1)

“Wraps” around a FileInputStream object to speed up input by reducing the number of
disk reads

The whole block of data is read into the RAM buffer at once

The BufferedInputStream Class (Page 2)

A subclass of FilterInputStream

It has no methods of its own—all are inherited from InputStream

Located in the java.io package

import java.io.BufferedInputStream;

The BufferedInputStream Class (Page 3)

Format:

BufferedInputStream bufferedInputStreamObject = new BufferedInputStream(
fileInputStreamObject);

Example:

BufferedInputStream input = new BufferedInputStream(new FileInputStream(
"temp.dat"));

The BufferedInputStream Class (Page 4)

A DataInputStream can be “wrapped” around the BufferedInputStream to provide
functionality for reading primitives and strings:

DataInputStream dataInputStreamObject = new DataOutputStream(new
BufferedInputStream(fileInputStreamObject));

Example:

DataInputStream input = new DataInputStream(new BufferedInputStream(new
FileInputStream("temp.dat")));

The BufferedOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to speed up output by reducing the number
of disk writes

The whole block of data first is written into the RAM buffer; when the buffer is full, the
block is written to disk

The BufferedOutputStream Class (Page 2)

A subclass of FilterOutputStream

It has no methods of its own—all are inherited from OutputStream

Located in the java.io package

import java.io.BufferedOutputStream;

The BufferedOutputStream Class (Page 3)

Format:

BufferedOutputStream bufferedOutputStreamObject = new BufferedOutputStream(
fileOutputStreamObject);

Example:

BufferedOutputStream output = new BufferedOutputStream(new FileOutputStream(
"temp.dat"));

The BufferedOutputStream Class (Page 4)

A DataOutputStream can be “wrapped” around the BufferedOutputStream to provide
functionality to write primitives and strings:

DataOutputStream dataOutputStreamObject = new DataOutputStream(new
BufferedOutputStream(fileOutputStreamObject));

Example:

DataOutputStream input = new DataOutputStream(new BufferedOutputStream(new
FileOutputStream("temp.dat")));

BufferedIOStream.java (Page 1)

BufferedIOStream.java (Page 2)

BufferedIOStream.java (Page 3)

BufferedIOStream.java (Page 4)

BufferedIOStream.java (Page 5)

BufferedIOStream.java (Page 6)

The ObjectInputStream Class (Page 1)

“Wraps” around a FileInputStream object to give it the ability to read “serializable”
objects from the input stream

Reads primitives and strings as well (contains all the methods of class
DataInputStream)

Located in the java.io package

import java.io.ObjectInputStream;

The ObjectInputStream Class (Page 2)

Format:

ObjectInputStream objectInputStreamObject = new ObjectInputStream(
fileInputStreamObject);

Example:

ObjectInputStream input = new ObjectInputStream(new FileInputStream(
"temp.dat"));

The ObjectOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to give it the ability to write “serializable”
objects to the output stream

Writes primitives and strings as well (contains all the methods of class
DataOutputStream)

Located in the java.io package

import java.io.ObjectOutputStream;

The ObjectOutputStream Class (Page 2)

Format:

ObjectOutputStream objectOutputStreamObject = new ObjectOutputStream(
fileOutputStreamObject);

Example:

ObjectOutputStream input = new ObjectOutputStream(new FileOutputStream(
"temp.dat"));

The readObject() Method

A method of class ObjectInputStream that reads a “serializable” object from the input
stream

May throw a ClassNotFoundException because when the JVM restores the object, it
must first load the class into RAM

Format:

objectInputStreamObject.readObject ();

Example:

SuffolkResident student = input.readObject();

The writeObject() Method

A method of class ObjectInputString that writes a “serializable” object into the output
stream

Format:

objectOutputStreamObject.writeObject(object);

Example:

output.writeObject(new SuffolkResident());

ObjectIOStream.java (Page 1)

ObjectIOStream.java (Page 2)

ObjectIOStream.java (Page 3)

ObjectIOStream.java (Page 4)

ObjectIOStream.java (Page 5)

ObjectIOStream.java (Page 6)

Mini-Quiz No. 2 (Page 1)

Open the BlueJ project “binary-miniquizzes” and create a class named
“BinaryMiniQuiz2”:

– Create a static void method output() and instantiate object variable output from
class ObjectOutputStream

– Instantiate an object from class StringBuilder

– Get input from method showInputDialog() for three fields

•productID—an int

• item—a String

•price—a double

– Write the input fields to the StringBuilder object with labels (see example above)

– Write the StringBuilder object to the output file

BinaryMiniQuiz2.java (Page 1)

BinaryMiniQuiz2.java (Page 2)

Mini-Quiz No. 2 (Page 2)

Open the BlueJ project “binary-miniquizzes” and create a class named
“BinaryMiniQuiz2” (con):

– Create a static void method input() and instantiate an object variable input from
class ObjectInputStream

– Read the StringBuilder object and display all the data in a showMessageDialog()

BinaryMiniQuiz2.java (Page 3)

The Serializable Interface (Page 1)

Objects that can be written to the output stream are said to serializable

– Classes from which such objects are instantiated implement the Serializable
interface

To store an object, the JVM must store:

– The class name and its signature

– All current property (data field) values of the class and its superclasses

This process, called object serialization, is implemented in ObjectDataStream objects

Java API “StringBuilder”

The Serializable Interface (Page 2)

Format:

public class ClassName [extends ClassName] implements Serializable

{ …

Example:

public class Student extends Object implements Serializable

{ …

BinaryMiniQuiz2.java (Page 1)

Serializing Arrays (Page 1)

If all elements of an array are serializable, the array is serializable

An array can be saved using writeObject() and restored using readObject()

– Recall that arrays are objects

Serializing Arrays (Page 2)

Format for readObject():

type[] arrayObject = (castType[]) objectInputStreamObject.readObject();

– Method returns an object so it must be cast to the array object type

Example:

SuffolkResident[] student = (SuffolkResident[]) input.readObject();

Serializing Arrays (Page 3)

Format for writeObject():

objectInputStreamObject.readObject(arrayObject);

Example:

SuffolkResident[] student = new SuffolkResident[3];

…

output.writeObject(student);

Random Access Files (Page 1)

Refers to ability to access records from a data file at random

– The opposite of random access is sequential access in which data must be accessed
by passing through all intervening points

Enables reading or writing information from or to any point in the file

– In a sequential-access file, must be accessed starting from the beginning of the file

Random Access Files

Random Access Files (Page 2)

Disks are random access media

– Tapes are sequential access media

Sometimes also called direct access

The RandomAccessFile Class (Page 1)

Objects instantiated from this class have the ability to read and write randomly

Similar to FileWriter and FileReader in that a file can be specified on the system to
open when it is created it

– Use either “path/filename” string or File object

The RandomAccessFile Class (Page 2)

When opening a RandomAccessFile, indicate whether file just will be read from (“r”) or
also written to (“rw”)

– Must be able to read a file in order to write it

Located in the java.io package

import java.io.RandomAccessFile;

The RandomAccessFile Class (Page 3)

Format:

RandomAccessFile randomAccessObject = new RandomAccessFile("path/filename" |
fileObject, "r"/"rw");

– The strings “r” or “rw” are the access methods

Example:

RandomAccessFile studentFile = new RandomAccessFile("e:/studentFile.dat", "rw");

Random Access File Processing (Page 1)

After a random file is open, common read and write methods are defined in the
DataInput and DataOutput interfaces to perform I/O

– Class RandomAccessFile implements both DataInput and DataOutput

Random Access File Processing (Page 2)

For example:

– The writeInt() writes four bytes of numeric integer data to the file

– The readInt() reads four bytes of numeric integer data from the file

There are write and read methods for every primitive data type

The File Pointer

RandomAccessFile supports the notion of a file pointer:

– Indicates the current location in the file

– When the file is first created or opened, the file pointer is set to zero (0), indicating
the beginning of the file

– Calls to read and write methods advances the file pointer by the number of bytes
read or written

FilesStreams8.java (Page 1)

FilesStreams8.java (Page 2)

The seek() Method (Page 1)

A method of the RandomAccessFile class that sets moves the file-pointer position

– Measured in bytes from the beginning of file

– The location at which the next read or write operation will begin

The offset position often is calculated based upon which record is to be accessed next

The seek() Method (Page 2)

Format:

randomAccessObject.seek(long);

– long is a long integer value or variable, or an arithmetic expression that evaluates to
a long

Examples:

studentFile.seek(4);

studentFile.seek(4 * (courseNumber - 1));

The Data

The Index

FilesStreams9.java (Page 1)

FilesStreams9.java (Page 2)

FilesStreams9.java (Page 3)

FilesStreams10.java (Page 1)

FilesStreams10.java (Page 2)

FilesStreams10.java (Page 3)

The Data

Record Size

The Index

The length() Method for a RandomAccessFile Object

For a RandomAccessFile object, returns the length of the file measured in bytes

Format:

randomAccessFileName.length();

Example:

studentFile.seek(studentFile.length());

FilesStreams11.java (Page 1)

FilesStreams11.java (Page 2)

FilesStreams11.java (Page 3)

FilesStreams12.java (Page 1)

FilesStreams12.java (Page 2)

FilesStreams12.java (Page 3)

The readChar() Method for a RandomAccessFile Object

Reads a single character from an object instantiated from class RandomAccessFile

Format:

randomAccessFileObject.readChar();

Example:

chars[ctr] = inFile.readChar();

The getChars() Method for a String Object (Page 1)

Copies characters from String into a destination char array

Format:

stringObject.getChars(srcBegin, srcEnd, dest, destBegin);

– srcBegin—index of the first character to copy

– srcEnd—index after the last character to copy

– dest—the destination char array

– destBegin—start offset in destination char array

The getChars() Method for a String Object (Page 2)

Format:

stringObject.getChars(srcBegin, srcEnd, dest, destBegin);

Example:

outString.getChars(0, length, chars, 0);

– The variable chars is a char array

The writeChars() Method for a RandomAccessFile Object (Page 1)

Writes a String to as RandomAccessFile as a sequence of characters …

– Each character is written separately to the data output stream as though were being
written by the writeChar() method contained within a loop

The write operation starts at the current position of the file pointer

The writeChars() Method for a RandomAccessFile Object (Page 2)

Format:

randomAccessFileName.writeChars(String);

Example:

outFile.writeChars(new String(chars));

– The variable chars is a char array and String is a call to String constructor that takes
a char array

The DataInput and DataOutput Interfaces (Page 1)

DataInput—an interface that implements the reading bytes from a binary stream

– The bytes may be reconstructed into any of the Java primitive types

DataOutput—an interface that implements the writing bytes to a binary stream

– Data converted from any of the Java primitive types back to a series of bytes

The DataInput and DataOutput Interfaces (Page 2)

The RandomAccessFile class implements both the DataInput and DataOutput
interfaces

– Therefore a RandomAccessFile object “is a” DataInput object and “is a” DataOutput
object

Subtyping allows RandomAccessFile objects to be “assigned” to a DataInput or
DataOutput object

Found in the java.io package

import java.io.DataInput;

import java.io.DataOutput;

The DataInput and DataOutput Interfaces (Page 3)

Examples:

DataOutput courseFile = new RandomAccessFile("courseFile.dat", "rw")

– Subtyping when instantiating a RandomAccessFile object variable

public static String readFixedLengthString(int size, DataInput inFile)

– Subtyping when passing a RandomAccessFile object to a parameter variable

FixedLengthStringIO.java (Page 1)

FixedLengthStringIO.java (Page 2)

FixedLengthStringIO.java (Page 3)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

CST141—Binary I/O Page 2

Binary I/O

CST141

Binary Data

All data is stored in computers in binary format

– All ones (1) and zeros (0)

Text (including digits) is converted to some coding scheme (ASCII, Unicode, etc.)

Binary does not require conversions—the binary numeric value is written directly to the
file

InputStream and OutputStream

These are the abstract classes from which all binary input and output classes extend

An especially good example of inheritance from the Java API

All methods from all subclasses throw the checked IOException (or one of its
subclasses) which must be caught

– Must be imported from java.io

The Binary I/O Classes

The FileInputStream Class (Page 1)

Used for creating input streams that read only positive byte numeric data from a file

A subclass of InputStream

– Inherits the read() method that reads one byte of data to the stream

Located in the java.io package

import java.io.FileInputStream;

The FileInputStream Class (Page 2)

Format:

FileInputStream fileInputStreamObject = new FileInputStream("path/filename");

Throws a java.io.FileNotFoundException if the file does not exist

Throws a java.io.DirectoryNotFoundException if the folder on the drivedoes not exist

Examples:

FileInputStream input = new FileInputStream("temp.dat");

The FileOutputStream Class (Page 1)

Used for creating output stream objects that write only positive byte numeric data to a
file

A subclass of OutputStream

– Inherits the write() method that writes one byte of data to the stream

Located in the java.io package

import java.io.FileOutputStream;

The FileOutputStream Class (Page 2)

Format:

FileOutputStream fileOutputStreamObject = new FileOutputStream("path/filename");

Examples:

FileOutputStream input = new FileOutputStream("temp.dat");

The read() Method

A method of class FileInputStream (inherited from FileStream) that reads the next byte
of data from the input stream—from the file)

Format:

fileInputStreamObject.read();

Example:

byte credits = input.read();

The write() Method

A method of class FileInputStream (inherited from FileStream) that writes a specified
byte of data to the output stream—to the file)

Format:

fileOutputStreamObject.write(byteValue);

Example:

output.write(credits);

FileIO.java (Page 1)

FileIO.java (Page 2)

FileIO.java (Page 3)

FileIO.java (Page 4)

FileIO.java (Page 5)

FileIO.java (Page 6)

Filter Streams

The FilterInputStream and FilterOutputStream classes filter streams filter bytes for
some purpose

Subclasses of these two classes read and write integers, floats, strings, characters and
booleans

The DataInputStream Class (Page 1)

“Wraps” around a FileInputStream object to give it the ability to read integers, floats,
strings, booleans and characters

A subclass of FilterInputStream

Located in the java.io package

import java.io.DataInputStream;

The DataInputStream Class (Page 2)

Format:

DataInputStream dataInputStreamObject = new
DataInputStream(fileInputStreamObject);

Example:

DataInputStream input = new DataInputStream(new FileInputStream("temp.dat"));

The DataOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to give it the ability to write integers,
floats, strings, booleans and characters

A subclass of FilterOutputStream

Located in the java.io package

import java.io.DataOutputStream;

The DataOutputStream Class (Page 2)

Format:

DataOutputStream dataInputStreamObject = new
DataOutputStream(fileOutputStreamObject);

Example:

DataOutputStream input = new DataOutputStream(new FileOutputStream(
"temp.dat"));

Primitive Read Methods for Class DataInputStream (Page 1)

Reads primitives including integers, floats, booleans and characters from the input
stream—from a file):

– readByte()

– readChar()

– readFloat()

– readDouble()

– readInt()

– readLong()

– readShort()

– readBoolean()

Primitive Read Methods for Class DataInputStream (Page 2)

Format:

dataInputStreamObject.readPrimitive();

Example:

int credits = input.readInt();

The readUTF() Method

A method of class DataInputStream that reads a series of bytes from the input stream
that are in UTF-8 format and converts them into a string

Format:

dataInputStreamObject.readUTF();

Example:

String firstName = input.readUTF();

Primitive Write Methods for Class DataOutputStream (Page 1)

Writes primitives including integers, floats, booleans and characters to the output
stream—to a file):

– writeByte()

– writeChar()

– writeFloat()

– writeDouble()

– writeInt()

– writeLong()

– writeShort()

– writeBoolean()

Primitive Write Methods for Class DataOutputStream (Page 2)

Format:

dataOutputStreamObject.writePrimitive();

Example:

output.writeInt(credits);

The writeUTF() Method

A method of class DataInputString that converts a series of bytes into a string (UTF-8
format) and writes them into the output stream

Format:

dataInputStreamObject.readUTF();

Example:

ouput.readUTF(firstName);

DataIOStream.java (Page 1)

DataIOStream.java (Page 2)

DataIOStream.java (Page 3)

DataIOStream.java (Page 4)

DataIOStream.java (Page 5)

DataIOStream.java (Page 6)

Mini-Quiz No. 1 (Page 1)

Create a new BlueJ project named “binary-miniquizzes” and create a class named
“BinaryMiniQuiz1”

– Create a static void method output() and instantiate object variable output from
class DataOutputStream

– Use a for loop to iterate three times and get input from method showInputDialog()
for three fields

•productID—an int

• item—a String

•price—a double

– Write the three fields to the output object

BinaryMiniQuiz1.java (Page 1)

BinaryMiniQuiz1.java (Page 2)

Mini-Quiz No. 1 (Page 2)

Create a new BlueJ project named “binary-miniquizzes” and create a class named
“BinaryMiniQuiz1” (con):

– Create a static void method input() and instantiate an object variable input from
class DataInputStream

– Use a for loop to iterate through and read the three fields for all records from the
input object into a StringBuilder object with appropriate labels (see example above)

– Display all the data in a showMessageDialog()

BinaryMiniQuiz1.java (Page 3)

The BufferedInputStream Class (Page 1)

“Wraps” around a FileInputStream object to speed up input by reducing the number of
disk reads

The whole block of data is read into the RAM buffer at once

The BufferedInputStream Class (Page 2)

A subclass of FilterInputStream

It has no methods of its own—all are inherited from InputStream

Located in the java.io package

import java.io.BufferedInputStream;

The BufferedInputStream Class (Page 3)

Format:

BufferedInputStream bufferedInputStreamObject = new BufferedInputStream(
fileInputStreamObject);

Example:

BufferedInputStream input = new BufferedInputStream(new FileInputStream(
"temp.dat"));

The BufferedInputStream Class (Page 4)

A DataInputStream can be “wrapped” around the BufferedInputStream to provide
functionality for reading primitives and strings:

DataInputStream dataInputStreamObject = new DataOutputStream(new
BufferedInputStream(fileInputStreamObject));

Example:

DataInputStream input = new DataInputStream(new BufferedInputStream(new
FileInputStream("temp.dat")));

The BufferedOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to speed up output by reducing the number
of disk writes

The whole block of data first is written into the RAM buffer; when the buffer is full, the
block is written to disk

The BufferedOutputStream Class (Page 2)

A subclass of FilterOutputStream

It has no methods of its own—all are inherited from OutputStream

Located in the java.io package

import java.io.BufferedOutputStream;

The BufferedOutputStream Class (Page 3)

Format:

BufferedOutputStream bufferedOutputStreamObject = new BufferedOutputStream(
fileOutputStreamObject);

Example:

BufferedOutputStream output = new BufferedOutputStream(new FileOutputStream(
"temp.dat"));

The BufferedOutputStream Class (Page 4)

A DataOutputStream can be “wrapped” around the BufferedOutputStream to provide
functionality to write primitives and strings:

DataOutputStream dataOutputStreamObject = new DataOutputStream(new
BufferedOutputStream(fileOutputStreamObject));

Example:

DataOutputStream input = new DataOutputStream(new BufferedOutputStream(new
FileOutputStream("temp.dat")));

BufferedIOStream.java (Page 1)

BufferedIOStream.java (Page 2)

BufferedIOStream.java (Page 3)

BufferedIOStream.java (Page 4)

BufferedIOStream.java (Page 5)

BufferedIOStream.java (Page 6)

The ObjectInputStream Class (Page 1)

“Wraps” around a FileInputStream object to give it the ability to read “serializable”
objects from the input stream

Reads primitives and strings as well (contains all the methods of class
DataInputStream)

Located in the java.io package

import java.io.ObjectInputStream;

The ObjectInputStream Class (Page 2)

Format:

ObjectInputStream objectInputStreamObject = new ObjectInputStream(
fileInputStreamObject);

Example:

ObjectInputStream input = new ObjectInputStream(new FileInputStream(
"temp.dat"));

The ObjectOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to give it the ability to write “serializable”
objects to the output stream

Writes primitives and strings as well (contains all the methods of class
DataOutputStream)

Located in the java.io package

import java.io.ObjectOutputStream;

The ObjectOutputStream Class (Page 2)

Format:

ObjectOutputStream objectOutputStreamObject = new ObjectOutputStream(
fileOutputStreamObject);

Example:

ObjectOutputStream input = new ObjectOutputStream(new FileOutputStream(
"temp.dat"));

The readObject() Method

A method of class ObjectInputStream that reads a “serializable” object from the input
stream

May throw a ClassNotFoundException because when the JVM restores the object, it
must first load the class into RAM

Format:

objectInputStreamObject.readObject ();

Example:

SuffolkResident student = input.readObject();

The writeObject() Method

A method of class ObjectInputString that writes a “serializable” object into the output
stream

Format:

objectOutputStreamObject.writeObject(object);

Example:

output.writeObject(new SuffolkResident());

ObjectIOStream.java (Page 1)

ObjectIOStream.java (Page 2)

ObjectIOStream.java (Page 3)

ObjectIOStream.java (Page 4)

ObjectIOStream.java (Page 5)

ObjectIOStream.java (Page 6)

Mini-Quiz No. 2 (Page 1)

Open the BlueJ project “binary-miniquizzes” and create a class named
“BinaryMiniQuiz2”:

– Create a static void method output() and instantiate object variable output from
class ObjectOutputStream

– Instantiate an object from class StringBuilder

– Get input from method showInputDialog() for three fields

•productID—an int

• item—a String

•price—a double

– Write the input fields to the StringBuilder object with labels (see example above)

– Write the StringBuilder object to the output file

BinaryMiniQuiz2.java (Page 1)

BinaryMiniQuiz2.java (Page 2)

Mini-Quiz No. 2 (Page 2)

Open the BlueJ project “binary-miniquizzes” and create a class named
“BinaryMiniQuiz2” (con):

– Create a static void method input() and instantiate an object variable input from
class ObjectInputStream

– Read the StringBuilder object and display all the data in a showMessageDialog()

BinaryMiniQuiz2.java (Page 3)

The Serializable Interface (Page 1)

Objects that can be written to the output stream are said to serializable

– Classes from which such objects are instantiated implement the Serializable
interface

To store an object, the JVM must store:

– The class name and its signature

– All current property (data field) values of the class and its superclasses

This process, called object serialization, is implemented in ObjectDataStream objects

Java API “StringBuilder”

The Serializable Interface (Page 2)

Format:

public class ClassName [extends ClassName] implements Serializable

{ …

Example:

public class Student extends Object implements Serializable

{ …

BinaryMiniQuiz2.java (Page 1)

Serializing Arrays (Page 1)

If all elements of an array are serializable, the array is serializable

An array can be saved using writeObject() and restored using readObject()

– Recall that arrays are objects

Serializing Arrays (Page 2)

Format for readObject():

type[] arrayObject = (castType[]) objectInputStreamObject.readObject();

– Method returns an object so it must be cast to the array object type

Example:

SuffolkResident[] student = (SuffolkResident[]) input.readObject();

Serializing Arrays (Page 3)

Format for writeObject():

objectInputStreamObject.readObject(arrayObject);

Example:

SuffolkResident[] student = new SuffolkResident[3];

…

output.writeObject(student);

Random Access Files (Page 1)

Refers to ability to access records from a data file at random

– The opposite of random access is sequential access in which data must be accessed
by passing through all intervening points

Enables reading or writing information from or to any point in the file

– In a sequential-access file, must be accessed starting from the beginning of the file

Random Access Files

Random Access Files (Page 2)

Disks are random access media

– Tapes are sequential access media

Sometimes also called direct access

The RandomAccessFile Class (Page 1)

Objects instantiated from this class have the ability to read and write randomly

Similar to FileWriter and FileReader in that a file can be specified on the system to
open when it is created it

– Use either “path/filename” string or File object

The RandomAccessFile Class (Page 2)

When opening a RandomAccessFile, indicate whether file just will be read from (“r”) or
also written to (“rw”)

– Must be able to read a file in order to write it

Located in the java.io package

import java.io.RandomAccessFile;

The RandomAccessFile Class (Page 3)

Format:

RandomAccessFile randomAccessObject = new RandomAccessFile("path/filename" |
fileObject, "r"/"rw");

– The strings “r” or “rw” are the access methods

Example:

RandomAccessFile studentFile = new RandomAccessFile("e:/studentFile.dat", "rw");

Random Access File Processing (Page 1)

After a random file is open, common read and write methods are defined in the
DataInput and DataOutput interfaces to perform I/O

– Class RandomAccessFile implements both DataInput and DataOutput

Random Access File Processing (Page 2)

For example:

– The writeInt() writes four bytes of numeric integer data to the file

– The readInt() reads four bytes of numeric integer data from the file

There are write and read methods for every primitive data type

The File Pointer

RandomAccessFile supports the notion of a file pointer:

– Indicates the current location in the file

– When the file is first created or opened, the file pointer is set to zero (0), indicating
the beginning of the file

– Calls to read and write methods advances the file pointer by the number of bytes
read or written

FilesStreams8.java (Page 1)

FilesStreams8.java (Page 2)

The seek() Method (Page 1)

A method of the RandomAccessFile class that sets moves the file-pointer position

– Measured in bytes from the beginning of file

– The location at which the next read or write operation will begin

The offset position often is calculated based upon which record is to be accessed next

The seek() Method (Page 2)

Format:

randomAccessObject.seek(long);

– long is a long integer value or variable, or an arithmetic expression that evaluates to
a long

Examples:

studentFile.seek(4);

studentFile.seek(4 * (courseNumber - 1));

The Data

The Index

FilesStreams9.java (Page 1)

FilesStreams9.java (Page 2)

FilesStreams9.java (Page 3)

FilesStreams10.java (Page 1)

FilesStreams10.java (Page 2)

FilesStreams10.java (Page 3)

The Data

Record Size

The Index

The length() Method for a RandomAccessFile Object

For a RandomAccessFile object, returns the length of the file measured in bytes

Format:

randomAccessFileName.length();

Example:

studentFile.seek(studentFile.length());

FilesStreams11.java (Page 1)

FilesStreams11.java (Page 2)

FilesStreams11.java (Page 3)

FilesStreams12.java (Page 1)

FilesStreams12.java (Page 2)

FilesStreams12.java (Page 3)

The readChar() Method for a RandomAccessFile Object

Reads a single character from an object instantiated from class RandomAccessFile

Format:

randomAccessFileObject.readChar();

Example:

chars[ctr] = inFile.readChar();

The getChars() Method for a String Object (Page 1)

Copies characters from String into a destination char array

Format:

stringObject.getChars(srcBegin, srcEnd, dest, destBegin);

– srcBegin—index of the first character to copy

– srcEnd—index after the last character to copy

– dest—the destination char array

– destBegin—start offset in destination char array

The getChars() Method for a String Object (Page 2)

Format:

stringObject.getChars(srcBegin, srcEnd, dest, destBegin);

Example:

outString.getChars(0, length, chars, 0);

– The variable chars is a char array

The writeChars() Method for a RandomAccessFile Object (Page 1)

Writes a String to as RandomAccessFile as a sequence of characters …

– Each character is written separately to the data output stream as though were being
written by the writeChar() method contained within a loop

The write operation starts at the current position of the file pointer

The writeChars() Method for a RandomAccessFile Object (Page 2)

Format:

randomAccessFileName.writeChars(String);

Example:

outFile.writeChars(new String(chars));

– The variable chars is a char array and String is a call to String constructor that takes
a char array

The DataInput and DataOutput Interfaces (Page 1)

DataInput—an interface that implements the reading bytes from a binary stream

– The bytes may be reconstructed into any of the Java primitive types

DataOutput—an interface that implements the writing bytes to a binary stream

– Data converted from any of the Java primitive types back to a series of bytes

The DataInput and DataOutput Interfaces (Page 2)

The RandomAccessFile class implements both the DataInput and DataOutput
interfaces

– Therefore a RandomAccessFile object “is a” DataInput object and “is a” DataOutput
object

Subtyping allows RandomAccessFile objects to be “assigned” to a DataInput or
DataOutput object

Found in the java.io package

import java.io.DataInput;

import java.io.DataOutput;

The DataInput and DataOutput Interfaces (Page 3)

Examples:

DataOutput courseFile = new RandomAccessFile("courseFile.dat", "rw")

– Subtyping when instantiating a RandomAccessFile object variable

public static String readFixedLengthString(int size, DataInput inFile)

– Subtyping when passing a RandomAccessFile object to a parameter variable

FixedLengthStringIO.java (Page 1)

FixedLengthStringIO.java (Page 2)

FixedLengthStringIO.java (Page 3)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

Binary I/O

CST141

Binary Data

All data is stored in computers in binary format

– All ones (1) and zeros (0)

Text (including digits) is converted to some coding scheme (ASCII, Unicode, etc.)

Binary does not require conversions—the binary numeric value is written directly to the
file

InputStream and OutputStream

These are the abstract classes from which all binary input and output classes extend

An especially good example of inheritance from the Java API

All methods from all subclasses throw the checked IOException (or one of its
subclasses) which must be caught

– Must be imported from java.io

The Binary I/O Classes

The FileInputStream Class (Page 1)

Used for creating input streams that read only positive byte numeric data from a file

A subclass of InputStream

– Inherits the read() method that reads one byte of data to the stream

Located in the java.io package

import java.io.FileInputStream;

The FileInputStream Class (Page 2)

Format:

FileInputStream fileInputStreamObject = new FileInputStream("path/filename");

Throws a java.io.FileNotFoundException if the file does not exist

Throws a java.io.DirectoryNotFoundException if the folder on the drivedoes not exist

Examples:

FileInputStream input = new FileInputStream("temp.dat");

The FileOutputStream Class (Page 1)

Used for creating output stream objects that write only positive byte numeric data to a
file

A subclass of OutputStream

– Inherits the write() method that writes one byte of data to the stream

Located in the java.io package

import java.io.FileOutputStream;

The FileOutputStream Class (Page 2)

Format:

FileOutputStream fileOutputStreamObject = new FileOutputStream("path/filename");

Examples:

FileOutputStream input = new FileOutputStream("temp.dat");

The read() Method

A method of class FileInputStream (inherited from FileStream) that reads the next byte
of data from the input stream—from the file)

Format:

fileInputStreamObject.read();

Example:

byte credits = input.read();

The write() Method

A method of class FileInputStream (inherited from FileStream) that writes a specified
byte of data to the output stream—to the file)

Format:

fileOutputStreamObject.write(byteValue);

Example:

output.write(credits);

FileIO.java (Page 1)

FileIO.java (Page 2)

FileIO.java (Page 3)

FileIO.java (Page 4)

FileIO.java (Page 5)

FileIO.java (Page 6)

Filter Streams

The FilterInputStream and FilterOutputStream classes filter streams filter bytes for
some purpose

Subclasses of these two classes read and write integers, floats, strings, characters and
booleans

The DataInputStream Class (Page 1)

“Wraps” around a FileInputStream object to give it the ability to read integers, floats,
strings, booleans and characters

A subclass of FilterInputStream

Located in the java.io package

import java.io.DataInputStream;

The DataInputStream Class (Page 2)

Format:

DataInputStream dataInputStreamObject = new
DataInputStream(fileInputStreamObject);

Example:

DataInputStream input = new DataInputStream(new FileInputStream("temp.dat"));

The DataOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to give it the ability to write integers,
floats, strings, booleans and characters

A subclass of FilterOutputStream

Located in the java.io package

import java.io.DataOutputStream;

The DataOutputStream Class (Page 2)

Format:

DataOutputStream dataInputStreamObject = new
DataOutputStream(fileOutputStreamObject);

Example:

DataOutputStream input = new DataOutputStream(new FileOutputStream(
"temp.dat"));

Primitive Read Methods for Class DataInputStream (Page 1)

Reads primitives including integers, floats, booleans and characters from the input
stream—from a file):

– readByte()

– readChar()

– readFloat()

– readDouble()

– readInt()

– readLong()

– readShort()

– readBoolean()

Primitive Read Methods for Class DataInputStream (Page 2)

Format:

dataInputStreamObject.readPrimitive();

Example:

int credits = input.readInt();

The readUTF() Method

A method of class DataInputStream that reads a series of bytes from the input stream
that are in UTF-8 format and converts them into a string

Format:

dataInputStreamObject.readUTF();

Example:

String firstName = input.readUTF();

Primitive Write Methods for Class DataOutputStream (Page 1)

Writes primitives including integers, floats, booleans and characters to the output
stream—to a file):

– writeByte()

– writeChar()

– writeFloat()

– writeDouble()

– writeInt()

– writeLong()

– writeShort()

– writeBoolean()

Primitive Write Methods for Class DataOutputStream (Page 2)

Format:

dataOutputStreamObject.writePrimitive();

Example:

output.writeInt(credits);

The writeUTF() Method

A method of class DataInputString that converts a series of bytes into a string (UTF-8
format) and writes them into the output stream

Format:

dataInputStreamObject.readUTF();

Example:

ouput.readUTF(firstName);

DataIOStream.java (Page 1)

DataIOStream.java (Page 2)

DataIOStream.java (Page 3)

DataIOStream.java (Page 4)

DataIOStream.java (Page 5)

DataIOStream.java (Page 6)

Mini-Quiz No. 1 (Page 1)

Create a new BlueJ project named “binary-miniquizzes” and create a class named
“BinaryMiniQuiz1”

– Create a static void method output() and instantiate object variable output from
class DataOutputStream

– Use a for loop to iterate three times and get input from method showInputDialog()
for three fields

•productID—an int

• item—a String

•price—a double

– Write the three fields to the output object

BinaryMiniQuiz1.java (Page 1)

BinaryMiniQuiz1.java (Page 2)

Mini-Quiz No. 1 (Page 2)

Create a new BlueJ project named “binary-miniquizzes” and create a class named
“BinaryMiniQuiz1” (con):

– Create a static void method input() and instantiate an object variable input from
class DataInputStream

– Use a for loop to iterate through and read the three fields for all records from the
input object into a StringBuilder object with appropriate labels (see example above)

– Display all the data in a showMessageDialog()

BinaryMiniQuiz1.java (Page 3)

The BufferedInputStream Class (Page 1)

“Wraps” around a FileInputStream object to speed up input by reducing the number of
disk reads

The whole block of data is read into the RAM buffer at once

The BufferedInputStream Class (Page 2)

A subclass of FilterInputStream

It has no methods of its own—all are inherited from InputStream

Located in the java.io package

import java.io.BufferedInputStream;

The BufferedInputStream Class (Page 3)

Format:

BufferedInputStream bufferedInputStreamObject = new BufferedInputStream(
fileInputStreamObject);

Example:

BufferedInputStream input = new BufferedInputStream(new FileInputStream(
"temp.dat"));

The BufferedInputStream Class (Page 4)

A DataInputStream can be “wrapped” around the BufferedInputStream to provide
functionality for reading primitives and strings:

DataInputStream dataInputStreamObject = new DataOutputStream(new
BufferedInputStream(fileInputStreamObject));

Example:

DataInputStream input = new DataInputStream(new BufferedInputStream(new
FileInputStream("temp.dat")));

The BufferedOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to speed up output by reducing the number
of disk writes

The whole block of data first is written into the RAM buffer; when the buffer is full, the
block is written to disk

The BufferedOutputStream Class (Page 2)

A subclass of FilterOutputStream

It has no methods of its own—all are inherited from OutputStream

Located in the java.io package

import java.io.BufferedOutputStream;

The BufferedOutputStream Class (Page 3)

Format:

BufferedOutputStream bufferedOutputStreamObject = new BufferedOutputStream(
fileOutputStreamObject);

Example:

BufferedOutputStream output = new BufferedOutputStream(new FileOutputStream(
"temp.dat"));

The BufferedOutputStream Class (Page 4)

A DataOutputStream can be “wrapped” around the BufferedOutputStream to provide
functionality to write primitives and strings:

DataOutputStream dataOutputStreamObject = new DataOutputStream(new
BufferedOutputStream(fileOutputStreamObject));

Example:

DataOutputStream input = new DataOutputStream(new BufferedOutputStream(new
FileOutputStream("temp.dat")));

BufferedIOStream.java (Page 1)

BufferedIOStream.java (Page 2)

BufferedIOStream.java (Page 3)

BufferedIOStream.java (Page 4)

BufferedIOStream.java (Page 5)

BufferedIOStream.java (Page 6)

The ObjectInputStream Class (Page 1)

“Wraps” around a FileInputStream object to give it the ability to read “serializable”
objects from the input stream

Reads primitives and strings as well (contains all the methods of class
DataInputStream)

Located in the java.io package

import java.io.ObjectInputStream;

The ObjectInputStream Class (Page 2)

Format:

ObjectInputStream objectInputStreamObject = new ObjectInputStream(
fileInputStreamObject);

Example:

ObjectInputStream input = new ObjectInputStream(new FileInputStream(
"temp.dat"));

The ObjectOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to give it the ability to write “serializable”
objects to the output stream

Writes primitives and strings as well (contains all the methods of class
DataOutputStream)

Located in the java.io package

import java.io.ObjectOutputStream;

The ObjectOutputStream Class (Page 2)

Format:

ObjectOutputStream objectOutputStreamObject = new ObjectOutputStream(
fileOutputStreamObject);

Example:

ObjectOutputStream input = new ObjectOutputStream(new FileOutputStream(
"temp.dat"));

The readObject() Method

A method of class ObjectInputStream that reads a “serializable” object from the input
stream

May throw a ClassNotFoundException because when the JVM restores the object, it
must first load the class into RAM

Format:

objectInputStreamObject.readObject ();

Example:

SuffolkResident student = input.readObject();

The writeObject() Method

A method of class ObjectInputString that writes a “serializable” object into the output
stream

Format:

objectOutputStreamObject.writeObject(object);

Example:

output.writeObject(new SuffolkResident());

ObjectIOStream.java (Page 1)

ObjectIOStream.java (Page 2)

ObjectIOStream.java (Page 3)

ObjectIOStream.java (Page 4)

ObjectIOStream.java (Page 5)

ObjectIOStream.java (Page 6)

Mini-Quiz No. 2 (Page 1)

Open the BlueJ project “binary-miniquizzes” and create a class named
“BinaryMiniQuiz2”:

– Create a static void method output() and instantiate object variable output from
class ObjectOutputStream

– Instantiate an object from class StringBuilder

– Get input from method showInputDialog() for three fields

•productID—an int

• item—a String

•price—a double

– Write the input fields to the StringBuilder object with labels (see example above)

– Write the StringBuilder object to the output file

BinaryMiniQuiz2.java (Page 1)

BinaryMiniQuiz2.java (Page 2)

Mini-Quiz No. 2 (Page 2)

Open the BlueJ project “binary-miniquizzes” and create a class named
“BinaryMiniQuiz2” (con):

– Create a static void method input() and instantiate an object variable input from
class ObjectInputStream

– Read the StringBuilder object and display all the data in a showMessageDialog()

BinaryMiniQuiz2.java (Page 3)

The Serializable Interface (Page 1)

Objects that can be written to the output stream are said to serializable

– Classes from which such objects are instantiated implement the Serializable
interface

To store an object, the JVM must store:

– The class name and its signature

– All current property (data field) values of the class and its superclasses

This process, called object serialization, is implemented in ObjectDataStream objects

Java API “StringBuilder”

The Serializable Interface (Page 2)

Format:

public class ClassName [extends ClassName] implements Serializable

{ …

Example:

public class Student extends Object implements Serializable

{ …

BinaryMiniQuiz2.java (Page 1)

Serializing Arrays (Page 1)

If all elements of an array are serializable, the array is serializable

An array can be saved using writeObject() and restored using readObject()

– Recall that arrays are objects

Serializing Arrays (Page 2)

Format for readObject():

type[] arrayObject = (castType[]) objectInputStreamObject.readObject();

– Method returns an object so it must be cast to the array object type

Example:

SuffolkResident[] student = (SuffolkResident[]) input.readObject();

Serializing Arrays (Page 3)

Format for writeObject():

objectInputStreamObject.readObject(arrayObject);

Example:

SuffolkResident[] student = new SuffolkResident[3];

…

output.writeObject(student);

Random Access Files (Page 1)

Refers to ability to access records from a data file at random

– The opposite of random access is sequential access in which data must be accessed
by passing through all intervening points

Enables reading or writing information from or to any point in the file

– In a sequential-access file, must be accessed starting from the beginning of the file

Random Access Files

Random Access Files (Page 2)

Disks are random access media

– Tapes are sequential access media

Sometimes also called direct access

The RandomAccessFile Class (Page 1)

Objects instantiated from this class have the ability to read and write randomly

Similar to FileWriter and FileReader in that a file can be specified on the system to
open when it is created it

– Use either “path/filename” string or File object

The RandomAccessFile Class (Page 2)

When opening a RandomAccessFile, indicate whether file just will be read from (“r”) or
also written to (“rw”)

– Must be able to read a file in order to write it

Located in the java.io package

import java.io.RandomAccessFile;

The RandomAccessFile Class (Page 3)

Format:

RandomAccessFile randomAccessObject = new RandomAccessFile("path/filename" |
fileObject, "r"/"rw");

– The strings “r” or “rw” are the access methods

Example:

RandomAccessFile studentFile = new RandomAccessFile("e:/studentFile.dat", "rw");

Random Access File Processing (Page 1)

After a random file is open, common read and write methods are defined in the
DataInput and DataOutput interfaces to perform I/O

– Class RandomAccessFile implements both DataInput and DataOutput

Random Access File Processing (Page 2)

For example:

– The writeInt() writes four bytes of numeric integer data to the file

– The readInt() reads four bytes of numeric integer data from the file

There are write and read methods for every primitive data type

The File Pointer

RandomAccessFile supports the notion of a file pointer:

– Indicates the current location in the file

– When the file is first created or opened, the file pointer is set to zero (0), indicating
the beginning of the file

– Calls to read and write methods advances the file pointer by the number of bytes
read or written

FilesStreams8.java (Page 1)

FilesStreams8.java (Page 2)

The seek() Method (Page 1)

A method of the RandomAccessFile class that sets moves the file-pointer position

– Measured in bytes from the beginning of file

– The location at which the next read or write operation will begin

The offset position often is calculated based upon which record is to be accessed next

The seek() Method (Page 2)

Format:

randomAccessObject.seek(long);

– long is a long integer value or variable, or an arithmetic expression that evaluates to
a long

Examples:

studentFile.seek(4);

studentFile.seek(4 * (courseNumber - 1));

The Data

The Index

FilesStreams9.java (Page 1)

FilesStreams9.java (Page 2)

FilesStreams9.java (Page 3)

FilesStreams10.java (Page 1)

FilesStreams10.java (Page 2)

FilesStreams10.java (Page 3)

The Data

Record Size

The Index

The length() Method for a RandomAccessFile Object

For a RandomAccessFile object, returns the length of the file measured in bytes

Format:

randomAccessFileName.length();

Example:

studentFile.seek(studentFile.length());

FilesStreams11.java (Page 1)

FilesStreams11.java (Page 2)

FilesStreams11.java (Page 3)

FilesStreams12.java (Page 1)

FilesStreams12.java (Page 2)

FilesStreams12.java (Page 3)

The readChar() Method for a RandomAccessFile Object

Reads a single character from an object instantiated from class RandomAccessFile

Format:

randomAccessFileObject.readChar();

Example:

chars[ctr] = inFile.readChar();

The getChars() Method for a String Object (Page 1)

Copies characters from String into a destination char array

Format:

stringObject.getChars(srcBegin, srcEnd, dest, destBegin);

– srcBegin—index of the first character to copy

– srcEnd—index after the last character to copy

– dest—the destination char array

– destBegin—start offset in destination char array

The getChars() Method for a String Object (Page 2)

Format:

stringObject.getChars(srcBegin, srcEnd, dest, destBegin);

Example:

outString.getChars(0, length, chars, 0);

– The variable chars is a char array

The writeChars() Method for a RandomAccessFile Object (Page 1)

Writes a String to as RandomAccessFile as a sequence of characters …

– Each character is written separately to the data output stream as though were being
written by the writeChar() method contained within a loop

The write operation starts at the current position of the file pointer

The writeChars() Method for a RandomAccessFile Object (Page 2)

Format:

randomAccessFileName.writeChars(String);

Example:

outFile.writeChars(new String(chars));

– The variable chars is a char array and String is a call to String constructor that takes
a char array

The DataInput and DataOutput Interfaces (Page 1)

DataInput—an interface that implements the reading bytes from a binary stream

– The bytes may be reconstructed into any of the Java primitive types

DataOutput—an interface that implements the writing bytes to a binary stream

– Data converted from any of the Java primitive types back to a series of bytes

The DataInput and DataOutput Interfaces (Page 2)

The RandomAccessFile class implements both the DataInput and DataOutput
interfaces

– Therefore a RandomAccessFile object “is a” DataInput object and “is a” DataOutput
object

Subtyping allows RandomAccessFile objects to be “assigned” to a DataInput or
DataOutput object

Found in the java.io package

import java.io.DataInput;

import java.io.DataOutput;

The DataInput and DataOutput Interfaces (Page 3)

Examples:

DataOutput courseFile = new RandomAccessFile("courseFile.dat", "rw")

– Subtyping when instantiating a RandomAccessFile object variable

public static String readFixedLengthString(int size, DataInput inFile)

– Subtyping when passing a RandomAccessFile object to a parameter variable

FixedLengthStringIO.java (Page 1)

FixedLengthStringIO.java (Page 2)

FixedLengthStringIO.java (Page 3)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

CST141—Binary I/O Page 3

Binary I/O

CST141

Binary Data

All data is stored in computers in binary format

– All ones (1) and zeros (0)

Text (including digits) is converted to some coding scheme (ASCII, Unicode, etc.)

Binary does not require conversions—the binary numeric value is written directly to the
file

InputStream and OutputStream

These are the abstract classes from which all binary input and output classes extend

An especially good example of inheritance from the Java API

All methods from all subclasses throw the checked IOException (or one of its
subclasses) which must be caught

– Must be imported from java.io

The Binary I/O Classes

The FileInputStream Class (Page 1)

Used for creating input streams that read only positive byte numeric data from a file

A subclass of InputStream

– Inherits the read() method that reads one byte of data to the stream

Located in the java.io package

import java.io.FileInputStream;

The FileInputStream Class (Page 2)

Format:

FileInputStream fileInputStreamObject = new FileInputStream("path/filename");

Throws a java.io.FileNotFoundException if the file does not exist

Throws a java.io.DirectoryNotFoundException if the folder on the drivedoes not exist

Examples:

FileInputStream input = new FileInputStream("temp.dat");

The FileOutputStream Class (Page 1)

Used for creating output stream objects that write only positive byte numeric data to a
file

A subclass of OutputStream

– Inherits the write() method that writes one byte of data to the stream

Located in the java.io package

import java.io.FileOutputStream;

The FileOutputStream Class (Page 2)

Format:

FileOutputStream fileOutputStreamObject = new FileOutputStream("path/filename");

Examples:

FileOutputStream input = new FileOutputStream("temp.dat");

The read() Method

A method of class FileInputStream (inherited from FileStream) that reads the next byte
of data from the input stream—from the file)

Format:

fileInputStreamObject.read();

Example:

byte credits = input.read();

The write() Method

A method of class FileInputStream (inherited from FileStream) that writes a specified
byte of data to the output stream—to the file)

Format:

fileOutputStreamObject.write(byteValue);

Example:

output.write(credits);

FileIO.java (Page 1)

FileIO.java (Page 2)

FileIO.java (Page 3)

FileIO.java (Page 4)

FileIO.java (Page 5)

FileIO.java (Page 6)

Filter Streams

The FilterInputStream and FilterOutputStream classes filter streams filter bytes for
some purpose

Subclasses of these two classes read and write integers, floats, strings, characters and
booleans

The DataInputStream Class (Page 1)

“Wraps” around a FileInputStream object to give it the ability to read integers, floats,
strings, booleans and characters

A subclass of FilterInputStream

Located in the java.io package

import java.io.DataInputStream;

The DataInputStream Class (Page 2)

Format:

DataInputStream dataInputStreamObject = new
DataInputStream(fileInputStreamObject);

Example:

DataInputStream input = new DataInputStream(new FileInputStream("temp.dat"));

The DataOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to give it the ability to write integers,
floats, strings, booleans and characters

A subclass of FilterOutputStream

Located in the java.io package

import java.io.DataOutputStream;

The DataOutputStream Class (Page 2)

Format:

DataOutputStream dataInputStreamObject = new
DataOutputStream(fileOutputStreamObject);

Example:

DataOutputStream input = new DataOutputStream(new FileOutputStream(
"temp.dat"));

Primitive Read Methods for Class DataInputStream (Page 1)

Reads primitives including integers, floats, booleans and characters from the input
stream—from a file):

– readByte()

– readChar()

– readFloat()

– readDouble()

– readInt()

– readLong()

– readShort()

– readBoolean()

Primitive Read Methods for Class DataInputStream (Page 2)

Format:

dataInputStreamObject.readPrimitive();

Example:

int credits = input.readInt();

The readUTF() Method

A method of class DataInputStream that reads a series of bytes from the input stream
that are in UTF-8 format and converts them into a string

Format:

dataInputStreamObject.readUTF();

Example:

String firstName = input.readUTF();

Primitive Write Methods for Class DataOutputStream (Page 1)

Writes primitives including integers, floats, booleans and characters to the output
stream—to a file):

– writeByte()

– writeChar()

– writeFloat()

– writeDouble()

– writeInt()

– writeLong()

– writeShort()

– writeBoolean()

Primitive Write Methods for Class DataOutputStream (Page 2)

Format:

dataOutputStreamObject.writePrimitive();

Example:

output.writeInt(credits);

The writeUTF() Method

A method of class DataInputString that converts a series of bytes into a string (UTF-8
format) and writes them into the output stream

Format:

dataInputStreamObject.readUTF();

Example:

ouput.readUTF(firstName);

DataIOStream.java (Page 1)

DataIOStream.java (Page 2)

DataIOStream.java (Page 3)

DataIOStream.java (Page 4)

DataIOStream.java (Page 5)

DataIOStream.java (Page 6)

Mini-Quiz No. 1 (Page 1)

Create a new BlueJ project named “binary-miniquizzes” and create a class named
“BinaryMiniQuiz1”

– Create a static void method output() and instantiate object variable output from
class DataOutputStream

– Use a for loop to iterate three times and get input from method showInputDialog()
for three fields

•productID—an int

• item—a String

•price—a double

– Write the three fields to the output object

BinaryMiniQuiz1.java (Page 1)

BinaryMiniQuiz1.java (Page 2)

Mini-Quiz No. 1 (Page 2)

Create a new BlueJ project named “binary-miniquizzes” and create a class named
“BinaryMiniQuiz1” (con):

– Create a static void method input() and instantiate an object variable input from
class DataInputStream

– Use a for loop to iterate through and read the three fields for all records from the
input object into a StringBuilder object with appropriate labels (see example above)

– Display all the data in a showMessageDialog()

BinaryMiniQuiz1.java (Page 3)

The BufferedInputStream Class (Page 1)

“Wraps” around a FileInputStream object to speed up input by reducing the number of
disk reads

The whole block of data is read into the RAM buffer at once

The BufferedInputStream Class (Page 2)

A subclass of FilterInputStream

It has no methods of its own—all are inherited from InputStream

Located in the java.io package

import java.io.BufferedInputStream;

The BufferedInputStream Class (Page 3)

Format:

BufferedInputStream bufferedInputStreamObject = new BufferedInputStream(
fileInputStreamObject);

Example:

BufferedInputStream input = new BufferedInputStream(new FileInputStream(
"temp.dat"));

The BufferedInputStream Class (Page 4)

A DataInputStream can be “wrapped” around the BufferedInputStream to provide
functionality for reading primitives and strings:

DataInputStream dataInputStreamObject = new DataOutputStream(new
BufferedInputStream(fileInputStreamObject));

Example:

DataInputStream input = new DataInputStream(new BufferedInputStream(new
FileInputStream("temp.dat")));

The BufferedOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to speed up output by reducing the number
of disk writes

The whole block of data first is written into the RAM buffer; when the buffer is full, the
block is written to disk

The BufferedOutputStream Class (Page 2)

A subclass of FilterOutputStream

It has no methods of its own—all are inherited from OutputStream

Located in the java.io package

import java.io.BufferedOutputStream;

The BufferedOutputStream Class (Page 3)

Format:

BufferedOutputStream bufferedOutputStreamObject = new BufferedOutputStream(
fileOutputStreamObject);

Example:

BufferedOutputStream output = new BufferedOutputStream(new FileOutputStream(
"temp.dat"));

The BufferedOutputStream Class (Page 4)

A DataOutputStream can be “wrapped” around the BufferedOutputStream to provide
functionality to write primitives and strings:

DataOutputStream dataOutputStreamObject = new DataOutputStream(new
BufferedOutputStream(fileOutputStreamObject));

Example:

DataOutputStream input = new DataOutputStream(new BufferedOutputStream(new
FileOutputStream("temp.dat")));

BufferedIOStream.java (Page 1)

BufferedIOStream.java (Page 2)

BufferedIOStream.java (Page 3)

BufferedIOStream.java (Page 4)

BufferedIOStream.java (Page 5)

BufferedIOStream.java (Page 6)

The ObjectInputStream Class (Page 1)

“Wraps” around a FileInputStream object to give it the ability to read “serializable”
objects from the input stream

Reads primitives and strings as well (contains all the methods of class
DataInputStream)

Located in the java.io package

import java.io.ObjectInputStream;

The ObjectInputStream Class (Page 2)

Format:

ObjectInputStream objectInputStreamObject = new ObjectInputStream(
fileInputStreamObject);

Example:

ObjectInputStream input = new ObjectInputStream(new FileInputStream(
"temp.dat"));

The ObjectOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to give it the ability to write “serializable”
objects to the output stream

Writes primitives and strings as well (contains all the methods of class
DataOutputStream)

Located in the java.io package

import java.io.ObjectOutputStream;

The ObjectOutputStream Class (Page 2)

Format:

ObjectOutputStream objectOutputStreamObject = new ObjectOutputStream(
fileOutputStreamObject);

Example:

ObjectOutputStream input = new ObjectOutputStream(new FileOutputStream(
"temp.dat"));

The readObject() Method

A method of class ObjectInputStream that reads a “serializable” object from the input
stream

May throw a ClassNotFoundException because when the JVM restores the object, it
must first load the class into RAM

Format:

objectInputStreamObject.readObject ();

Example:

SuffolkResident student = input.readObject();

The writeObject() Method

A method of class ObjectInputString that writes a “serializable” object into the output
stream

Format:

objectOutputStreamObject.writeObject(object);

Example:

output.writeObject(new SuffolkResident());

ObjectIOStream.java (Page 1)

ObjectIOStream.java (Page 2)

ObjectIOStream.java (Page 3)

ObjectIOStream.java (Page 4)

ObjectIOStream.java (Page 5)

ObjectIOStream.java (Page 6)

Mini-Quiz No. 2 (Page 1)

Open the BlueJ project “binary-miniquizzes” and create a class named
“BinaryMiniQuiz2”:

– Create a static void method output() and instantiate object variable output from
class ObjectOutputStream

– Instantiate an object from class StringBuilder

– Get input from method showInputDialog() for three fields

•productID—an int

• item—a String

•price—a double

– Write the input fields to the StringBuilder object with labels (see example above)

– Write the StringBuilder object to the output file

BinaryMiniQuiz2.java (Page 1)

BinaryMiniQuiz2.java (Page 2)

Mini-Quiz No. 2 (Page 2)

Open the BlueJ project “binary-miniquizzes” and create a class named
“BinaryMiniQuiz2” (con):

– Create a static void method input() and instantiate an object variable input from
class ObjectInputStream

– Read the StringBuilder object and display all the data in a showMessageDialog()

BinaryMiniQuiz2.java (Page 3)

The Serializable Interface (Page 1)

Objects that can be written to the output stream are said to serializable

– Classes from which such objects are instantiated implement the Serializable
interface

To store an object, the JVM must store:

– The class name and its signature

– All current property (data field) values of the class and its superclasses

This process, called object serialization, is implemented in ObjectDataStream objects

Java API “StringBuilder”

The Serializable Interface (Page 2)

Format:

public class ClassName [extends ClassName] implements Serializable

{ …

Example:

public class Student extends Object implements Serializable

{ …

BinaryMiniQuiz2.java (Page 1)

Serializing Arrays (Page 1)

If all elements of an array are serializable, the array is serializable

An array can be saved using writeObject() and restored using readObject()

– Recall that arrays are objects

Serializing Arrays (Page 2)

Format for readObject():

type[] arrayObject = (castType[]) objectInputStreamObject.readObject();

– Method returns an object so it must be cast to the array object type

Example:

SuffolkResident[] student = (SuffolkResident[]) input.readObject();

Serializing Arrays (Page 3)

Format for writeObject():

objectInputStreamObject.readObject(arrayObject);

Example:

SuffolkResident[] student = new SuffolkResident[3];

…

output.writeObject(student);

Random Access Files (Page 1)

Refers to ability to access records from a data file at random

– The opposite of random access is sequential access in which data must be accessed
by passing through all intervening points

Enables reading or writing information from or to any point in the file

– In a sequential-access file, must be accessed starting from the beginning of the file

Random Access Files

Random Access Files (Page 2)

Disks are random access media

– Tapes are sequential access media

Sometimes also called direct access

The RandomAccessFile Class (Page 1)

Objects instantiated from this class have the ability to read and write randomly

Similar to FileWriter and FileReader in that a file can be specified on the system to
open when it is created it

– Use either “path/filename” string or File object

The RandomAccessFile Class (Page 2)

When opening a RandomAccessFile, indicate whether file just will be read from (“r”) or
also written to (“rw”)

– Must be able to read a file in order to write it

Located in the java.io package

import java.io.RandomAccessFile;

The RandomAccessFile Class (Page 3)

Format:

RandomAccessFile randomAccessObject = new RandomAccessFile("path/filename" |
fileObject, "r"/"rw");

– The strings “r” or “rw” are the access methods

Example:

RandomAccessFile studentFile = new RandomAccessFile("e:/studentFile.dat", "rw");

Random Access File Processing (Page 1)

After a random file is open, common read and write methods are defined in the
DataInput and DataOutput interfaces to perform I/O

– Class RandomAccessFile implements both DataInput and DataOutput

Random Access File Processing (Page 2)

For example:

– The writeInt() writes four bytes of numeric integer data to the file

– The readInt() reads four bytes of numeric integer data from the file

There are write and read methods for every primitive data type

The File Pointer

RandomAccessFile supports the notion of a file pointer:

– Indicates the current location in the file

– When the file is first created or opened, the file pointer is set to zero (0), indicating
the beginning of the file

– Calls to read and write methods advances the file pointer by the number of bytes
read or written

FilesStreams8.java (Page 1)

FilesStreams8.java (Page 2)

The seek() Method (Page 1)

A method of the RandomAccessFile class that sets moves the file-pointer position

– Measured in bytes from the beginning of file

– The location at which the next read or write operation will begin

The offset position often is calculated based upon which record is to be accessed next

The seek() Method (Page 2)

Format:

randomAccessObject.seek(long);

– long is a long integer value or variable, or an arithmetic expression that evaluates to
a long

Examples:

studentFile.seek(4);

studentFile.seek(4 * (courseNumber - 1));

The Data

The Index

FilesStreams9.java (Page 1)

FilesStreams9.java (Page 2)

FilesStreams9.java (Page 3)

FilesStreams10.java (Page 1)

FilesStreams10.java (Page 2)

FilesStreams10.java (Page 3)

The Data

Record Size

The Index

The length() Method for a RandomAccessFile Object

For a RandomAccessFile object, returns the length of the file measured in bytes

Format:

randomAccessFileName.length();

Example:

studentFile.seek(studentFile.length());

FilesStreams11.java (Page 1)

FilesStreams11.java (Page 2)

FilesStreams11.java (Page 3)

FilesStreams12.java (Page 1)

FilesStreams12.java (Page 2)

FilesStreams12.java (Page 3)

The readChar() Method for a RandomAccessFile Object

Reads a single character from an object instantiated from class RandomAccessFile

Format:

randomAccessFileObject.readChar();

Example:

chars[ctr] = inFile.readChar();

The getChars() Method for a String Object (Page 1)

Copies characters from String into a destination char array

Format:

stringObject.getChars(srcBegin, srcEnd, dest, destBegin);

– srcBegin—index of the first character to copy

– srcEnd—index after the last character to copy

– dest—the destination char array

– destBegin—start offset in destination char array

The getChars() Method for a String Object (Page 2)

Format:

stringObject.getChars(srcBegin, srcEnd, dest, destBegin);

Example:

outString.getChars(0, length, chars, 0);

– The variable chars is a char array

The writeChars() Method for a RandomAccessFile Object (Page 1)

Writes a String to as RandomAccessFile as a sequence of characters …

– Each character is written separately to the data output stream as though were being
written by the writeChar() method contained within a loop

The write operation starts at the current position of the file pointer

The writeChars() Method for a RandomAccessFile Object (Page 2)

Format:

randomAccessFileName.writeChars(String);

Example:

outFile.writeChars(new String(chars));

– The variable chars is a char array and String is a call to String constructor that takes
a char array

The DataInput and DataOutput Interfaces (Page 1)

DataInput—an interface that implements the reading bytes from a binary stream

– The bytes may be reconstructed into any of the Java primitive types

DataOutput—an interface that implements the writing bytes to a binary stream

– Data converted from any of the Java primitive types back to a series of bytes

The DataInput and DataOutput Interfaces (Page 2)

The RandomAccessFile class implements both the DataInput and DataOutput
interfaces

– Therefore a RandomAccessFile object “is a” DataInput object and “is a” DataOutput
object

Subtyping allows RandomAccessFile objects to be “assigned” to a DataInput or
DataOutput object

Found in the java.io package

import java.io.DataInput;

import java.io.DataOutput;

The DataInput and DataOutput Interfaces (Page 3)

Examples:

DataOutput courseFile = new RandomAccessFile("courseFile.dat", "rw")

– Subtyping when instantiating a RandomAccessFile object variable

public static String readFixedLengthString(int size, DataInput inFile)

– Subtyping when passing a RandomAccessFile object to a parameter variable

FixedLengthStringIO.java (Page 1)

FixedLengthStringIO.java (Page 2)

FixedLengthStringIO.java (Page 3)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

CST141—Binary I/O Page 4

Binary I/O

CST141

Binary Data

All data is stored in computers in binary format

– All ones (1) and zeros (0)

Text (including digits) is converted to some coding scheme (ASCII, Unicode, etc.)

Binary does not require conversions—the binary numeric value is written directly to the
file

InputStream and OutputStream

These are the abstract classes from which all binary input and output classes extend

An especially good example of inheritance from the Java API

All methods from all subclasses throw the checked IOException (or one of its
subclasses) which must be caught

– Must be imported from java.io

The Binary I/O Classes

The FileInputStream Class (Page 1)

Used for creating input streams that read only positive byte numeric data from a file

A subclass of InputStream

– Inherits the read() method that reads one byte of data to the stream

Located in the java.io package

import java.io.FileInputStream;

The FileInputStream Class (Page 2)

Format:

FileInputStream fileInputStreamObject = new FileInputStream("path/filename");

Throws a java.io.FileNotFoundException if the file does not exist

Throws a java.io.DirectoryNotFoundException if the folder on the drivedoes not exist

Examples:

FileInputStream input = new FileInputStream("temp.dat");

The FileOutputStream Class (Page 1)

Used for creating output stream objects that write only positive byte numeric data to a
file

A subclass of OutputStream

– Inherits the write() method that writes one byte of data to the stream

Located in the java.io package

import java.io.FileOutputStream;

The FileOutputStream Class (Page 2)

Format:

FileOutputStream fileOutputStreamObject = new FileOutputStream("path/filename");

Examples:

FileOutputStream input = new FileOutputStream("temp.dat");

The read() Method

A method of class FileInputStream (inherited from FileStream) that reads the next byte
of data from the input stream—from the file)

Format:

fileInputStreamObject.read();

Example:

byte credits = input.read();

The write() Method

A method of class FileInputStream (inherited from FileStream) that writes a specified
byte of data to the output stream—to the file)

Format:

fileOutputStreamObject.write(byteValue);

Example:

output.write(credits);

FileIO.java (Page 1)

FileIO.java (Page 2)

FileIO.java (Page 3)

FileIO.java (Page 4)

FileIO.java (Page 5)

FileIO.java (Page 6)

Filter Streams

The FilterInputStream and FilterOutputStream classes filter streams filter bytes for
some purpose

Subclasses of these two classes read and write integers, floats, strings, characters and
booleans

The DataInputStream Class (Page 1)

“Wraps” around a FileInputStream object to give it the ability to read integers, floats,
strings, booleans and characters

A subclass of FilterInputStream

Located in the java.io package

import java.io.DataInputStream;

The DataInputStream Class (Page 2)

Format:

DataInputStream dataInputStreamObject = new
DataInputStream(fileInputStreamObject);

Example:

DataInputStream input = new DataInputStream(new FileInputStream("temp.dat"));

The DataOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to give it the ability to write integers,
floats, strings, booleans and characters

A subclass of FilterOutputStream

Located in the java.io package

import java.io.DataOutputStream;

The DataOutputStream Class (Page 2)

Format:

DataOutputStream dataInputStreamObject = new
DataOutputStream(fileOutputStreamObject);

Example:

DataOutputStream input = new DataOutputStream(new FileOutputStream(
"temp.dat"));

Primitive Read Methods for Class DataInputStream (Page 1)

Reads primitives including integers, floats, booleans and characters from the input
stream—from a file):

– readByte()

– readChar()

– readFloat()

– readDouble()

– readInt()

– readLong()

– readShort()

– readBoolean()

Primitive Read Methods for Class DataInputStream (Page 2)

Format:

dataInputStreamObject.readPrimitive();

Example:

int credits = input.readInt();

The readUTF() Method

A method of class DataInputStream that reads a series of bytes from the input stream
that are in UTF-8 format and converts them into a string

Format:

dataInputStreamObject.readUTF();

Example:

String firstName = input.readUTF();

Primitive Write Methods for Class DataOutputStream (Page 1)

Writes primitives including integers, floats, booleans and characters to the output
stream—to a file):

– writeByte()

– writeChar()

– writeFloat()

– writeDouble()

– writeInt()

– writeLong()

– writeShort()

– writeBoolean()

Primitive Write Methods for Class DataOutputStream (Page 2)

Format:

dataOutputStreamObject.writePrimitive();

Example:

output.writeInt(credits);

The writeUTF() Method

A method of class DataInputString that converts a series of bytes into a string (UTF-8
format) and writes them into the output stream

Format:

dataInputStreamObject.readUTF();

Example:

ouput.readUTF(firstName);

DataIOStream.java (Page 1)

DataIOStream.java (Page 2)

DataIOStream.java (Page 3)

DataIOStream.java (Page 4)

DataIOStream.java (Page 5)

DataIOStream.java (Page 6)

Mini-Quiz No. 1 (Page 1)

Create a new BlueJ project named “binary-miniquizzes” and create a class named
“BinaryMiniQuiz1”

– Create a static void method output() and instantiate object variable output from
class DataOutputStream

– Use a for loop to iterate three times and get input from method showInputDialog()
for three fields

•productID—an int

• item—a String

•price—a double

– Write the three fields to the output object

BinaryMiniQuiz1.java (Page 1)

BinaryMiniQuiz1.java (Page 2)

Mini-Quiz No. 1 (Page 2)

Create a new BlueJ project named “binary-miniquizzes” and create a class named
“BinaryMiniQuiz1” (con):

– Create a static void method input() and instantiate an object variable input from
class DataInputStream

– Use a for loop to iterate through and read the three fields for all records from the
input object into a StringBuilder object with appropriate labels (see example above)

– Display all the data in a showMessageDialog()

BinaryMiniQuiz1.java (Page 3)

The BufferedInputStream Class (Page 1)

“Wraps” around a FileInputStream object to speed up input by reducing the number of
disk reads

The whole block of data is read into the RAM buffer at once

The BufferedInputStream Class (Page 2)

A subclass of FilterInputStream

It has no methods of its own—all are inherited from InputStream

Located in the java.io package

import java.io.BufferedInputStream;

The BufferedInputStream Class (Page 3)

Format:

BufferedInputStream bufferedInputStreamObject = new BufferedInputStream(
fileInputStreamObject);

Example:

BufferedInputStream input = new BufferedInputStream(new FileInputStream(
"temp.dat"));

The BufferedInputStream Class (Page 4)

A DataInputStream can be “wrapped” around the BufferedInputStream to provide
functionality for reading primitives and strings:

DataInputStream dataInputStreamObject = new DataOutputStream(new
BufferedInputStream(fileInputStreamObject));

Example:

DataInputStream input = new DataInputStream(new BufferedInputStream(new
FileInputStream("temp.dat")));

The BufferedOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to speed up output by reducing the number
of disk writes

The whole block of data first is written into the RAM buffer; when the buffer is full, the
block is written to disk

The BufferedOutputStream Class (Page 2)

A subclass of FilterOutputStream

It has no methods of its own—all are inherited from OutputStream

Located in the java.io package

import java.io.BufferedOutputStream;

The BufferedOutputStream Class (Page 3)

Format:

BufferedOutputStream bufferedOutputStreamObject = new BufferedOutputStream(
fileOutputStreamObject);

Example:

BufferedOutputStream output = new BufferedOutputStream(new FileOutputStream(
"temp.dat"));

The BufferedOutputStream Class (Page 4)

A DataOutputStream can be “wrapped” around the BufferedOutputStream to provide
functionality to write primitives and strings:

DataOutputStream dataOutputStreamObject = new DataOutputStream(new
BufferedOutputStream(fileOutputStreamObject));

Example:

DataOutputStream input = new DataOutputStream(new BufferedOutputStream(new
FileOutputStream("temp.dat")));

BufferedIOStream.java (Page 1)

BufferedIOStream.java (Page 2)

BufferedIOStream.java (Page 3)

BufferedIOStream.java (Page 4)

BufferedIOStream.java (Page 5)

BufferedIOStream.java (Page 6)

The ObjectInputStream Class (Page 1)

“Wraps” around a FileInputStream object to give it the ability to read “serializable”
objects from the input stream

Reads primitives and strings as well (contains all the methods of class
DataInputStream)

Located in the java.io package

import java.io.ObjectInputStream;

The ObjectInputStream Class (Page 2)

Format:

ObjectInputStream objectInputStreamObject = new ObjectInputStream(
fileInputStreamObject);

Example:

ObjectInputStream input = new ObjectInputStream(new FileInputStream(
"temp.dat"));

The ObjectOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to give it the ability to write “serializable”
objects to the output stream

Writes primitives and strings as well (contains all the methods of class
DataOutputStream)

Located in the java.io package

import java.io.ObjectOutputStream;

The ObjectOutputStream Class (Page 2)

Format:

ObjectOutputStream objectOutputStreamObject = new ObjectOutputStream(
fileOutputStreamObject);

Example:

ObjectOutputStream input = new ObjectOutputStream(new FileOutputStream(
"temp.dat"));

The readObject() Method

A method of class ObjectInputStream that reads a “serializable” object from the input
stream

May throw a ClassNotFoundException because when the JVM restores the object, it
must first load the class into RAM

Format:

objectInputStreamObject.readObject ();

Example:

SuffolkResident student = input.readObject();

The writeObject() Method

A method of class ObjectInputString that writes a “serializable” object into the output
stream

Format:

objectOutputStreamObject.writeObject(object);

Example:

output.writeObject(new SuffolkResident());

ObjectIOStream.java (Page 1)

ObjectIOStream.java (Page 2)

ObjectIOStream.java (Page 3)

ObjectIOStream.java (Page 4)

ObjectIOStream.java (Page 5)

ObjectIOStream.java (Page 6)

Mini-Quiz No. 2 (Page 1)

Open the BlueJ project “binary-miniquizzes” and create a class named
“BinaryMiniQuiz2”:

– Create a static void method output() and instantiate object variable output from
class ObjectOutputStream

– Instantiate an object from class StringBuilder

– Get input from method showInputDialog() for three fields

•productID—an int

• item—a String

•price—a double

– Write the input fields to the StringBuilder object with labels (see example above)

– Write the StringBuilder object to the output file

BinaryMiniQuiz2.java (Page 1)

BinaryMiniQuiz2.java (Page 2)

Mini-Quiz No. 2 (Page 2)

Open the BlueJ project “binary-miniquizzes” and create a class named
“BinaryMiniQuiz2” (con):

– Create a static void method input() and instantiate an object variable input from
class ObjectInputStream

– Read the StringBuilder object and display all the data in a showMessageDialog()

BinaryMiniQuiz2.java (Page 3)

The Serializable Interface (Page 1)

Objects that can be written to the output stream are said to serializable

– Classes from which such objects are instantiated implement the Serializable
interface

To store an object, the JVM must store:

– The class name and its signature

– All current property (data field) values of the class and its superclasses

This process, called object serialization, is implemented in ObjectDataStream objects

Java API “StringBuilder”

The Serializable Interface (Page 2)

Format:

public class ClassName [extends ClassName] implements Serializable

{ …

Example:

public class Student extends Object implements Serializable

{ …

BinaryMiniQuiz2.java (Page 1)

Serializing Arrays (Page 1)

If all elements of an array are serializable, the array is serializable

An array can be saved using writeObject() and restored using readObject()

– Recall that arrays are objects

Serializing Arrays (Page 2)

Format for readObject():

type[] arrayObject = (castType[]) objectInputStreamObject.readObject();

– Method returns an object so it must be cast to the array object type

Example:

SuffolkResident[] student = (SuffolkResident[]) input.readObject();

Serializing Arrays (Page 3)

Format for writeObject():

objectInputStreamObject.readObject(arrayObject);

Example:

SuffolkResident[] student = new SuffolkResident[3];

…

output.writeObject(student);

Random Access Files (Page 1)

Refers to ability to access records from a data file at random

– The opposite of random access is sequential access in which data must be accessed
by passing through all intervening points

Enables reading or writing information from or to any point in the file

– In a sequential-access file, must be accessed starting from the beginning of the file

Random Access Files

Random Access Files (Page 2)

Disks are random access media

– Tapes are sequential access media

Sometimes also called direct access

The RandomAccessFile Class (Page 1)

Objects instantiated from this class have the ability to read and write randomly

Similar to FileWriter and FileReader in that a file can be specified on the system to
open when it is created it

– Use either “path/filename” string or File object

The RandomAccessFile Class (Page 2)

When opening a RandomAccessFile, indicate whether file just will be read from (“r”) or
also written to (“rw”)

– Must be able to read a file in order to write it

Located in the java.io package

import java.io.RandomAccessFile;

The RandomAccessFile Class (Page 3)

Format:

RandomAccessFile randomAccessObject = new RandomAccessFile("path/filename" |
fileObject, "r"/"rw");

– The strings “r” or “rw” are the access methods

Example:

RandomAccessFile studentFile = new RandomAccessFile("e:/studentFile.dat", "rw");

Random Access File Processing (Page 1)

After a random file is open, common read and write methods are defined in the
DataInput and DataOutput interfaces to perform I/O

– Class RandomAccessFile implements both DataInput and DataOutput

Random Access File Processing (Page 2)

For example:

– The writeInt() writes four bytes of numeric integer data to the file

– The readInt() reads four bytes of numeric integer data from the file

There are write and read methods for every primitive data type

The File Pointer

RandomAccessFile supports the notion of a file pointer:

– Indicates the current location in the file

– When the file is first created or opened, the file pointer is set to zero (0), indicating
the beginning of the file

– Calls to read and write methods advances the file pointer by the number of bytes
read or written

FilesStreams8.java (Page 1)

FilesStreams8.java (Page 2)

The seek() Method (Page 1)

A method of the RandomAccessFile class that sets moves the file-pointer position

– Measured in bytes from the beginning of file

– The location at which the next read or write operation will begin

The offset position often is calculated based upon which record is to be accessed next

The seek() Method (Page 2)

Format:

randomAccessObject.seek(long);

– long is a long integer value or variable, or an arithmetic expression that evaluates to
a long

Examples:

studentFile.seek(4);

studentFile.seek(4 * (courseNumber - 1));

The Data

The Index

FilesStreams9.java (Page 1)

FilesStreams9.java (Page 2)

FilesStreams9.java (Page 3)

FilesStreams10.java (Page 1)

FilesStreams10.java (Page 2)

FilesStreams10.java (Page 3)

The Data

Record Size

The Index

The length() Method for a RandomAccessFile Object

For a RandomAccessFile object, returns the length of the file measured in bytes

Format:

randomAccessFileName.length();

Example:

studentFile.seek(studentFile.length());

FilesStreams11.java (Page 1)

FilesStreams11.java (Page 2)

FilesStreams11.java (Page 3)

FilesStreams12.java (Page 1)

FilesStreams12.java (Page 2)

FilesStreams12.java (Page 3)

The readChar() Method for a RandomAccessFile Object

Reads a single character from an object instantiated from class RandomAccessFile

Format:

randomAccessFileObject.readChar();

Example:

chars[ctr] = inFile.readChar();

The getChars() Method for a String Object (Page 1)

Copies characters from String into a destination char array

Format:

stringObject.getChars(srcBegin, srcEnd, dest, destBegin);

– srcBegin—index of the first character to copy

– srcEnd—index after the last character to copy

– dest—the destination char array

– destBegin—start offset in destination char array

The getChars() Method for a String Object (Page 2)

Format:

stringObject.getChars(srcBegin, srcEnd, dest, destBegin);

Example:

outString.getChars(0, length, chars, 0);

– The variable chars is a char array

The writeChars() Method for a RandomAccessFile Object (Page 1)

Writes a String to as RandomAccessFile as a sequence of characters …

– Each character is written separately to the data output stream as though were being
written by the writeChar() method contained within a loop

The write operation starts at the current position of the file pointer

The writeChars() Method for a RandomAccessFile Object (Page 2)

Format:

randomAccessFileName.writeChars(String);

Example:

outFile.writeChars(new String(chars));

– The variable chars is a char array and String is a call to String constructor that takes
a char array

The DataInput and DataOutput Interfaces (Page 1)

DataInput—an interface that implements the reading bytes from a binary stream

– The bytes may be reconstructed into any of the Java primitive types

DataOutput—an interface that implements the writing bytes to a binary stream

– Data converted from any of the Java primitive types back to a series of bytes

The DataInput and DataOutput Interfaces (Page 2)

The RandomAccessFile class implements both the DataInput and DataOutput
interfaces

– Therefore a RandomAccessFile object “is a” DataInput object and “is a” DataOutput
object

Subtyping allows RandomAccessFile objects to be “assigned” to a DataInput or
DataOutput object

Found in the java.io package

import java.io.DataInput;

import java.io.DataOutput;

The DataInput and DataOutput Interfaces (Page 3)

Examples:

DataOutput courseFile = new RandomAccessFile("courseFile.dat", "rw")

– Subtyping when instantiating a RandomAccessFile object variable

public static String readFixedLengthString(int size, DataInput inFile)

– Subtyping when passing a RandomAccessFile object to a parameter variable

FixedLengthStringIO.java (Page 1)

FixedLengthStringIO.java (Page 2)

FixedLengthStringIO.java (Page 3)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

CST141—Binary I/O Page 5

Binary I/O

CST141

Binary Data

All data is stored in computers in binary format

– All ones (1) and zeros (0)

Text (including digits) is converted to some coding scheme (ASCII, Unicode, etc.)

Binary does not require conversions—the binary numeric value is written directly to the
file

InputStream and OutputStream

These are the abstract classes from which all binary input and output classes extend

An especially good example of inheritance from the Java API

All methods from all subclasses throw the checked IOException (or one of its
subclasses) which must be caught

– Must be imported from java.io

The Binary I/O Classes

The FileInputStream Class (Page 1)

Used for creating input streams that read only positive byte numeric data from a file

A subclass of InputStream

– Inherits the read() method that reads one byte of data to the stream

Located in the java.io package

import java.io.FileInputStream;

The FileInputStream Class (Page 2)

Format:

FileInputStream fileInputStreamObject = new FileInputStream("path/filename");

Throws a java.io.FileNotFoundException if the file does not exist

Throws a java.io.DirectoryNotFoundException if the folder on the drivedoes not exist

Examples:

FileInputStream input = new FileInputStream("temp.dat");

The FileOutputStream Class (Page 1)

Used for creating output stream objects that write only positive byte numeric data to a
file

A subclass of OutputStream

– Inherits the write() method that writes one byte of data to the stream

Located in the java.io package

import java.io.FileOutputStream;

The FileOutputStream Class (Page 2)

Format:

FileOutputStream fileOutputStreamObject = new FileOutputStream("path/filename");

Examples:

FileOutputStream input = new FileOutputStream("temp.dat");

The read() Method

A method of class FileInputStream (inherited from FileStream) that reads the next byte
of data from the input stream—from the file)

Format:

fileInputStreamObject.read();

Example:

byte credits = input.read();

The write() Method

A method of class FileInputStream (inherited from FileStream) that writes a specified
byte of data to the output stream—to the file)

Format:

fileOutputStreamObject.write(byteValue);

Example:

output.write(credits);

FileIO.java (Page 1)

FileIO.java (Page 2)

FileIO.java (Page 3)

FileIO.java (Page 4)

FileIO.java (Page 5)

FileIO.java (Page 6)

Filter Streams

The FilterInputStream and FilterOutputStream classes filter streams filter bytes for
some purpose

Subclasses of these two classes read and write integers, floats, strings, characters and
booleans

The DataInputStream Class (Page 1)

“Wraps” around a FileInputStream object to give it the ability to read integers, floats,
strings, booleans and characters

A subclass of FilterInputStream

Located in the java.io package

import java.io.DataInputStream;

The DataInputStream Class (Page 2)

Format:

DataInputStream dataInputStreamObject = new
DataInputStream(fileInputStreamObject);

Example:

DataInputStream input = new DataInputStream(new FileInputStream("temp.dat"));

The DataOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to give it the ability to write integers,
floats, strings, booleans and characters

A subclass of FilterOutputStream

Located in the java.io package

import java.io.DataOutputStream;

The DataOutputStream Class (Page 2)

Format:

DataOutputStream dataInputStreamObject = new
DataOutputStream(fileOutputStreamObject);

Example:

DataOutputStream input = new DataOutputStream(new FileOutputStream(
"temp.dat"));

Primitive Read Methods for Class DataInputStream (Page 1)

Reads primitives including integers, floats, booleans and characters from the input
stream—from a file):

– readByte()

– readChar()

– readFloat()

– readDouble()

– readInt()

– readLong()

– readShort()

– readBoolean()

Primitive Read Methods for Class DataInputStream (Page 2)

Format:

dataInputStreamObject.readPrimitive();

Example:

int credits = input.readInt();

The readUTF() Method

A method of class DataInputStream that reads a series of bytes from the input stream
that are in UTF-8 format and converts them into a string

Format:

dataInputStreamObject.readUTF();

Example:

String firstName = input.readUTF();

Primitive Write Methods for Class DataOutputStream (Page 1)

Writes primitives including integers, floats, booleans and characters to the output
stream—to a file):

– writeByte()

– writeChar()

– writeFloat()

– writeDouble()

– writeInt()

– writeLong()

– writeShort()

– writeBoolean()

Primitive Write Methods for Class DataOutputStream (Page 2)

Format:

dataOutputStreamObject.writePrimitive();

Example:

output.writeInt(credits);

The writeUTF() Method

A method of class DataInputString that converts a series of bytes into a string (UTF-8
format) and writes them into the output stream

Format:

dataInputStreamObject.readUTF();

Example:

ouput.readUTF(firstName);

DataIOStream.java (Page 1)

DataIOStream.java (Page 2)

DataIOStream.java (Page 3)

DataIOStream.java (Page 4)

DataIOStream.java (Page 5)

DataIOStream.java (Page 6)

Mini-Quiz No. 1 (Page 1)

Create a new BlueJ project named “binary-miniquizzes” and create a class named
“BinaryMiniQuiz1”

– Create a static void method output() and instantiate object variable output from
class DataOutputStream

– Use a for loop to iterate three times and get input from method showInputDialog()
for three fields

•productID—an int

• item—a String

•price—a double

– Write the three fields to the output object

BinaryMiniQuiz1.java (Page 1)

BinaryMiniQuiz1.java (Page 2)

Mini-Quiz No. 1 (Page 2)

Create a new BlueJ project named “binary-miniquizzes” and create a class named
“BinaryMiniQuiz1” (con):

– Create a static void method input() and instantiate an object variable input from
class DataInputStream

– Use a for loop to iterate through and read the three fields for all records from the
input object into a StringBuilder object with appropriate labels (see example above)

– Display all the data in a showMessageDialog()

BinaryMiniQuiz1.java (Page 3)

The BufferedInputStream Class (Page 1)

“Wraps” around a FileInputStream object to speed up input by reducing the number of
disk reads

The whole block of data is read into the RAM buffer at once

The BufferedInputStream Class (Page 2)

A subclass of FilterInputStream

It has no methods of its own—all are inherited from InputStream

Located in the java.io package

import java.io.BufferedInputStream;

The BufferedInputStream Class (Page 3)

Format:

BufferedInputStream bufferedInputStreamObject = new BufferedInputStream(
fileInputStreamObject);

Example:

BufferedInputStream input = new BufferedInputStream(new FileInputStream(
"temp.dat"));

The BufferedInputStream Class (Page 4)

A DataInputStream can be “wrapped” around the BufferedInputStream to provide
functionality for reading primitives and strings:

DataInputStream dataInputStreamObject = new DataOutputStream(new
BufferedInputStream(fileInputStreamObject));

Example:

DataInputStream input = new DataInputStream(new BufferedInputStream(new
FileInputStream("temp.dat")));

The BufferedOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to speed up output by reducing the number
of disk writes

The whole block of data first is written into the RAM buffer; when the buffer is full, the
block is written to disk

The BufferedOutputStream Class (Page 2)

A subclass of FilterOutputStream

It has no methods of its own—all are inherited from OutputStream

Located in the java.io package

import java.io.BufferedOutputStream;

The BufferedOutputStream Class (Page 3)

Format:

BufferedOutputStream bufferedOutputStreamObject = new BufferedOutputStream(
fileOutputStreamObject);

Example:

BufferedOutputStream output = new BufferedOutputStream(new FileOutputStream(
"temp.dat"));

The BufferedOutputStream Class (Page 4)

A DataOutputStream can be “wrapped” around the BufferedOutputStream to provide
functionality to write primitives and strings:

DataOutputStream dataOutputStreamObject = new DataOutputStream(new
BufferedOutputStream(fileOutputStreamObject));

Example:

DataOutputStream input = new DataOutputStream(new BufferedOutputStream(new
FileOutputStream("temp.dat")));

BufferedIOStream.java (Page 1)

BufferedIOStream.java (Page 2)

BufferedIOStream.java (Page 3)

BufferedIOStream.java (Page 4)

BufferedIOStream.java (Page 5)

BufferedIOStream.java (Page 6)

The ObjectInputStream Class (Page 1)

“Wraps” around a FileInputStream object to give it the ability to read “serializable”
objects from the input stream

Reads primitives and strings as well (contains all the methods of class
DataInputStream)

Located in the java.io package

import java.io.ObjectInputStream;

The ObjectInputStream Class (Page 2)

Format:

ObjectInputStream objectInputStreamObject = new ObjectInputStream(
fileInputStreamObject);

Example:

ObjectInputStream input = new ObjectInputStream(new FileInputStream(
"temp.dat"));

The ObjectOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to give it the ability to write “serializable”
objects to the output stream

Writes primitives and strings as well (contains all the methods of class
DataOutputStream)

Located in the java.io package

import java.io.ObjectOutputStream;

The ObjectOutputStream Class (Page 2)

Format:

ObjectOutputStream objectOutputStreamObject = new ObjectOutputStream(
fileOutputStreamObject);

Example:

ObjectOutputStream input = new ObjectOutputStream(new FileOutputStream(
"temp.dat"));

The readObject() Method

A method of class ObjectInputStream that reads a “serializable” object from the input
stream

May throw a ClassNotFoundException because when the JVM restores the object, it
must first load the class into RAM

Format:

objectInputStreamObject.readObject ();

Example:

SuffolkResident student = input.readObject();

The writeObject() Method

A method of class ObjectInputString that writes a “serializable” object into the output
stream

Format:

objectOutputStreamObject.writeObject(object);

Example:

output.writeObject(new SuffolkResident());

ObjectIOStream.java (Page 1)

ObjectIOStream.java (Page 2)

ObjectIOStream.java (Page 3)

ObjectIOStream.java (Page 4)

ObjectIOStream.java (Page 5)

ObjectIOStream.java (Page 6)

Mini-Quiz No. 2 (Page 1)

Open the BlueJ project “binary-miniquizzes” and create a class named
“BinaryMiniQuiz2”:

– Create a static void method output() and instantiate object variable output from
class ObjectOutputStream

– Instantiate an object from class StringBuilder

– Get input from method showInputDialog() for three fields

•productID—an int

• item—a String

•price—a double

– Write the input fields to the StringBuilder object with labels (see example above)

– Write the StringBuilder object to the output file

BinaryMiniQuiz2.java (Page 1)

BinaryMiniQuiz2.java (Page 2)

Mini-Quiz No. 2 (Page 2)

Open the BlueJ project “binary-miniquizzes” and create a class named
“BinaryMiniQuiz2” (con):

– Create a static void method input() and instantiate an object variable input from
class ObjectInputStream

– Read the StringBuilder object and display all the data in a showMessageDialog()

BinaryMiniQuiz2.java (Page 3)

The Serializable Interface (Page 1)

Objects that can be written to the output stream are said to serializable

– Classes from which such objects are instantiated implement the Serializable
interface

To store an object, the JVM must store:

– The class name and its signature

– All current property (data field) values of the class and its superclasses

This process, called object serialization, is implemented in ObjectDataStream objects

Java API “StringBuilder”

The Serializable Interface (Page 2)

Format:

public class ClassName [extends ClassName] implements Serializable

{ …

Example:

public class Student extends Object implements Serializable

{ …

BinaryMiniQuiz2.java (Page 1)

Serializing Arrays (Page 1)

If all elements of an array are serializable, the array is serializable

An array can be saved using writeObject() and restored using readObject()

– Recall that arrays are objects

Serializing Arrays (Page 2)

Format for readObject():

type[] arrayObject = (castType[]) objectInputStreamObject.readObject();

– Method returns an object so it must be cast to the array object type

Example:

SuffolkResident[] student = (SuffolkResident[]) input.readObject();

Serializing Arrays (Page 3)

Format for writeObject():

objectInputStreamObject.readObject(arrayObject);

Example:

SuffolkResident[] student = new SuffolkResident[3];

…

output.writeObject(student);

Random Access Files (Page 1)

Refers to ability to access records from a data file at random

– The opposite of random access is sequential access in which data must be accessed
by passing through all intervening points

Enables reading or writing information from or to any point in the file

– In a sequential-access file, must be accessed starting from the beginning of the file

Random Access Files

Random Access Files (Page 2)

Disks are random access media

– Tapes are sequential access media

Sometimes also called direct access

The RandomAccessFile Class (Page 1)

Objects instantiated from this class have the ability to read and write randomly

Similar to FileWriter and FileReader in that a file can be specified on the system to
open when it is created it

– Use either “path/filename” string or File object

The RandomAccessFile Class (Page 2)

When opening a RandomAccessFile, indicate whether file just will be read from (“r”) or
also written to (“rw”)

– Must be able to read a file in order to write it

Located in the java.io package

import java.io.RandomAccessFile;

The RandomAccessFile Class (Page 3)

Format:

RandomAccessFile randomAccessObject = new RandomAccessFile("path/filename" |
fileObject, "r"/"rw");

– The strings “r” or “rw” are the access methods

Example:

RandomAccessFile studentFile = new RandomAccessFile("e:/studentFile.dat", "rw");

Random Access File Processing (Page 1)

After a random file is open, common read and write methods are defined in the
DataInput and DataOutput interfaces to perform I/O

– Class RandomAccessFile implements both DataInput and DataOutput

Random Access File Processing (Page 2)

For example:

– The writeInt() writes four bytes of numeric integer data to the file

– The readInt() reads four bytes of numeric integer data from the file

There are write and read methods for every primitive data type

The File Pointer

RandomAccessFile supports the notion of a file pointer:

– Indicates the current location in the file

– When the file is first created or opened, the file pointer is set to zero (0), indicating
the beginning of the file

– Calls to read and write methods advances the file pointer by the number of bytes
read or written

FilesStreams8.java (Page 1)

FilesStreams8.java (Page 2)

The seek() Method (Page 1)

A method of the RandomAccessFile class that sets moves the file-pointer position

– Measured in bytes from the beginning of file

– The location at which the next read or write operation will begin

The offset position often is calculated based upon which record is to be accessed next

The seek() Method (Page 2)

Format:

randomAccessObject.seek(long);

– long is a long integer value or variable, or an arithmetic expression that evaluates to
a long

Examples:

studentFile.seek(4);

studentFile.seek(4 * (courseNumber - 1));

The Data

The Index

FilesStreams9.java (Page 1)

FilesStreams9.java (Page 2)

FilesStreams9.java (Page 3)

FilesStreams10.java (Page 1)

FilesStreams10.java (Page 2)

FilesStreams10.java (Page 3)

The Data

Record Size

The Index

The length() Method for a RandomAccessFile Object

For a RandomAccessFile object, returns the length of the file measured in bytes

Format:

randomAccessFileName.length();

Example:

studentFile.seek(studentFile.length());

FilesStreams11.java (Page 1)

FilesStreams11.java (Page 2)

FilesStreams11.java (Page 3)

FilesStreams12.java (Page 1)

FilesStreams12.java (Page 2)

FilesStreams12.java (Page 3)

The readChar() Method for a RandomAccessFile Object

Reads a single character from an object instantiated from class RandomAccessFile

Format:

randomAccessFileObject.readChar();

Example:

chars[ctr] = inFile.readChar();

The getChars() Method for a String Object (Page 1)

Copies characters from String into a destination char array

Format:

stringObject.getChars(srcBegin, srcEnd, dest, destBegin);

– srcBegin—index of the first character to copy

– srcEnd—index after the last character to copy

– dest—the destination char array

– destBegin—start offset in destination char array

The getChars() Method for a String Object (Page 2)

Format:

stringObject.getChars(srcBegin, srcEnd, dest, destBegin);

Example:

outString.getChars(0, length, chars, 0);

– The variable chars is a char array

The writeChars() Method for a RandomAccessFile Object (Page 1)

Writes a String to as RandomAccessFile as a sequence of characters …

– Each character is written separately to the data output stream as though were being
written by the writeChar() method contained within a loop

The write operation starts at the current position of the file pointer

The writeChars() Method for a RandomAccessFile Object (Page 2)

Format:

randomAccessFileName.writeChars(String);

Example:

outFile.writeChars(new String(chars));

– The variable chars is a char array and String is a call to String constructor that takes
a char array

The DataInput and DataOutput Interfaces (Page 1)

DataInput—an interface that implements the reading bytes from a binary stream

– The bytes may be reconstructed into any of the Java primitive types

DataOutput—an interface that implements the writing bytes to a binary stream

– Data converted from any of the Java primitive types back to a series of bytes

The DataInput and DataOutput Interfaces (Page 2)

The RandomAccessFile class implements both the DataInput and DataOutput
interfaces

– Therefore a RandomAccessFile object “is a” DataInput object and “is a” DataOutput
object

Subtyping allows RandomAccessFile objects to be “assigned” to a DataInput or
DataOutput object

Found in the java.io package

import java.io.DataInput;

import java.io.DataOutput;

The DataInput and DataOutput Interfaces (Page 3)

Examples:

DataOutput courseFile = new RandomAccessFile("courseFile.dat", "rw")

– Subtyping when instantiating a RandomAccessFile object variable

public static String readFixedLengthString(int size, DataInput inFile)

– Subtyping when passing a RandomAccessFile object to a parameter variable

FixedLengthStringIO.java (Page 1)

FixedLengthStringIO.java (Page 2)

FixedLengthStringIO.java (Page 3)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

Binary I/O

CST141

Binary Data

All data is stored in computers in binary format

– All ones (1) and zeros (0)

Text (including digits) is converted to some coding scheme (ASCII, Unicode, etc.)

Binary does not require conversions—the binary numeric value is written directly to the
file

InputStream and OutputStream

These are the abstract classes from which all binary input and output classes extend

An especially good example of inheritance from the Java API

All methods from all subclasses throw the checked IOException (or one of its
subclasses) which must be caught

– Must be imported from java.io

The Binary I/O Classes

The FileInputStream Class (Page 1)

Used for creating input streams that read only positive byte numeric data from a file

A subclass of InputStream

– Inherits the read() method that reads one byte of data to the stream

Located in the java.io package

import java.io.FileInputStream;

The FileInputStream Class (Page 2)

Format:

FileInputStream fileInputStreamObject = new FileInputStream("path/filename");

Throws a java.io.FileNotFoundException if the file does not exist

Throws a java.io.DirectoryNotFoundException if the folder on the drivedoes not exist

Examples:

FileInputStream input = new FileInputStream("temp.dat");

The FileOutputStream Class (Page 1)

Used for creating output stream objects that write only positive byte numeric data to a
file

A subclass of OutputStream

– Inherits the write() method that writes one byte of data to the stream

Located in the java.io package

import java.io.FileOutputStream;

The FileOutputStream Class (Page 2)

Format:

FileOutputStream fileOutputStreamObject = new FileOutputStream("path/filename");

Examples:

FileOutputStream input = new FileOutputStream("temp.dat");

The read() Method

A method of class FileInputStream (inherited from FileStream) that reads the next byte
of data from the input stream—from the file)

Format:

fileInputStreamObject.read();

Example:

byte credits = input.read();

The write() Method

A method of class FileInputStream (inherited from FileStream) that writes a specified
byte of data to the output stream—to the file)

Format:

fileOutputStreamObject.write(byteValue);

Example:

output.write(credits);

FileIO.java (Page 1)

FileIO.java (Page 2)

FileIO.java (Page 3)

FileIO.java (Page 4)

FileIO.java (Page 5)

FileIO.java (Page 6)

Filter Streams

The FilterInputStream and FilterOutputStream classes filter streams filter bytes for
some purpose

Subclasses of these two classes read and write integers, floats, strings, characters and
booleans

The DataInputStream Class (Page 1)

“Wraps” around a FileInputStream object to give it the ability to read integers, floats,
strings, booleans and characters

A subclass of FilterInputStream

Located in the java.io package

import java.io.DataInputStream;

The DataInputStream Class (Page 2)

Format:

DataInputStream dataInputStreamObject = new
DataInputStream(fileInputStreamObject);

Example:

DataInputStream input = new DataInputStream(new FileInputStream("temp.dat"));

The DataOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to give it the ability to write integers,
floats, strings, booleans and characters

A subclass of FilterOutputStream

Located in the java.io package

import java.io.DataOutputStream;

The DataOutputStream Class (Page 2)

Format:

DataOutputStream dataInputStreamObject = new
DataOutputStream(fileOutputStreamObject);

Example:

DataOutputStream input = new DataOutputStream(new FileOutputStream(
"temp.dat"));

Primitive Read Methods for Class DataInputStream (Page 1)

Reads primitives including integers, floats, booleans and characters from the input
stream—from a file):

– readByte()

– readChar()

– readFloat()

– readDouble()

– readInt()

– readLong()

– readShort()

– readBoolean()

Primitive Read Methods for Class DataInputStream (Page 2)

Format:

dataInputStreamObject.readPrimitive();

Example:

int credits = input.readInt();

The readUTF() Method

A method of class DataInputStream that reads a series of bytes from the input stream
that are in UTF-8 format and converts them into a string

Format:

dataInputStreamObject.readUTF();

Example:

String firstName = input.readUTF();

Primitive Write Methods for Class DataOutputStream (Page 1)

Writes primitives including integers, floats, booleans and characters to the output
stream—to a file):

– writeByte()

– writeChar()

– writeFloat()

– writeDouble()

– writeInt()

– writeLong()

– writeShort()

– writeBoolean()

Primitive Write Methods for Class DataOutputStream (Page 2)

Format:

dataOutputStreamObject.writePrimitive();

Example:

output.writeInt(credits);

The writeUTF() Method

A method of class DataInputString that converts a series of bytes into a string (UTF-8
format) and writes them into the output stream

Format:

dataInputStreamObject.readUTF();

Example:

ouput.readUTF(firstName);

DataIOStream.java (Page 1)

DataIOStream.java (Page 2)

DataIOStream.java (Page 3)

DataIOStream.java (Page 4)

DataIOStream.java (Page 5)

DataIOStream.java (Page 6)

Mini-Quiz No. 1 (Page 1)

Create a new BlueJ project named “binary-miniquizzes” and create a class named
“BinaryMiniQuiz1”

– Create a static void method output() and instantiate object variable output from
class DataOutputStream

– Use a for loop to iterate three times and get input from method showInputDialog()
for three fields

•productID—an int

• item—a String

•price—a double

– Write the three fields to the output object

BinaryMiniQuiz1.java (Page 1)

BinaryMiniQuiz1.java (Page 2)

Mini-Quiz No. 1 (Page 2)

Create a new BlueJ project named “binary-miniquizzes” and create a class named
“BinaryMiniQuiz1” (con):

– Create a static void method input() and instantiate an object variable input from
class DataInputStream

– Use a for loop to iterate through and read the three fields for all records from the
input object into a StringBuilder object with appropriate labels (see example above)

– Display all the data in a showMessageDialog()

BinaryMiniQuiz1.java (Page 3)

The BufferedInputStream Class (Page 1)

“Wraps” around a FileInputStream object to speed up input by reducing the number of
disk reads

The whole block of data is read into the RAM buffer at once

The BufferedInputStream Class (Page 2)

A subclass of FilterInputStream

It has no methods of its own—all are inherited from InputStream

Located in the java.io package

import java.io.BufferedInputStream;

The BufferedInputStream Class (Page 3)

Format:

BufferedInputStream bufferedInputStreamObject = new BufferedInputStream(
fileInputStreamObject);

Example:

BufferedInputStream input = new BufferedInputStream(new FileInputStream(
"temp.dat"));

The BufferedInputStream Class (Page 4)

A DataInputStream can be “wrapped” around the BufferedInputStream to provide
functionality for reading primitives and strings:

DataInputStream dataInputStreamObject = new DataOutputStream(new
BufferedInputStream(fileInputStreamObject));

Example:

DataInputStream input = new DataInputStream(new BufferedInputStream(new
FileInputStream("temp.dat")));

The BufferedOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to speed up output by reducing the number
of disk writes

The whole block of data first is written into the RAM buffer; when the buffer is full, the
block is written to disk

The BufferedOutputStream Class (Page 2)

A subclass of FilterOutputStream

It has no methods of its own—all are inherited from OutputStream

Located in the java.io package

import java.io.BufferedOutputStream;

The BufferedOutputStream Class (Page 3)

Format:

BufferedOutputStream bufferedOutputStreamObject = new BufferedOutputStream(
fileOutputStreamObject);

Example:

BufferedOutputStream output = new BufferedOutputStream(new FileOutputStream(
"temp.dat"));

The BufferedOutputStream Class (Page 4)

A DataOutputStream can be “wrapped” around the BufferedOutputStream to provide
functionality to write primitives and strings:

DataOutputStream dataOutputStreamObject = new DataOutputStream(new
BufferedOutputStream(fileOutputStreamObject));

Example:

DataOutputStream input = new DataOutputStream(new BufferedOutputStream(new
FileOutputStream("temp.dat")));

BufferedIOStream.java (Page 1)

BufferedIOStream.java (Page 2)

BufferedIOStream.java (Page 3)

BufferedIOStream.java (Page 4)

BufferedIOStream.java (Page 5)

BufferedIOStream.java (Page 6)

The ObjectInputStream Class (Page 1)

“Wraps” around a FileInputStream object to give it the ability to read “serializable”
objects from the input stream

Reads primitives and strings as well (contains all the methods of class
DataInputStream)

Located in the java.io package

import java.io.ObjectInputStream;

The ObjectInputStream Class (Page 2)

Format:

ObjectInputStream objectInputStreamObject = new ObjectInputStream(
fileInputStreamObject);

Example:

ObjectInputStream input = new ObjectInputStream(new FileInputStream(
"temp.dat"));

The ObjectOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to give it the ability to write “serializable”
objects to the output stream

Writes primitives and strings as well (contains all the methods of class
DataOutputStream)

Located in the java.io package

import java.io.ObjectOutputStream;

The ObjectOutputStream Class (Page 2)

Format:

ObjectOutputStream objectOutputStreamObject = new ObjectOutputStream(
fileOutputStreamObject);

Example:

ObjectOutputStream input = new ObjectOutputStream(new FileOutputStream(
"temp.dat"));

The readObject() Method

A method of class ObjectInputStream that reads a “serializable” object from the input
stream

May throw a ClassNotFoundException because when the JVM restores the object, it
must first load the class into RAM

Format:

objectInputStreamObject.readObject ();

Example:

SuffolkResident student = input.readObject();

The writeObject() Method

A method of class ObjectInputString that writes a “serializable” object into the output
stream

Format:

objectOutputStreamObject.writeObject(object);

Example:

output.writeObject(new SuffolkResident());

ObjectIOStream.java (Page 1)

ObjectIOStream.java (Page 2)

ObjectIOStream.java (Page 3)

ObjectIOStream.java (Page 4)

ObjectIOStream.java (Page 5)

ObjectIOStream.java (Page 6)

Mini-Quiz No. 2 (Page 1)

Open the BlueJ project “binary-miniquizzes” and create a class named
“BinaryMiniQuiz2”:

– Create a static void method output() and instantiate object variable output from
class ObjectOutputStream

– Instantiate an object from class StringBuilder

– Get input from method showInputDialog() for three fields

•productID—an int

• item—a String

•price—a double

– Write the input fields to the StringBuilder object with labels (see example above)

– Write the StringBuilder object to the output file

BinaryMiniQuiz2.java (Page 1)

BinaryMiniQuiz2.java (Page 2)

Mini-Quiz No. 2 (Page 2)

Open the BlueJ project “binary-miniquizzes” and create a class named
“BinaryMiniQuiz2” (con):

– Create a static void method input() and instantiate an object variable input from
class ObjectInputStream

– Read the StringBuilder object and display all the data in a showMessageDialog()

BinaryMiniQuiz2.java (Page 3)

The Serializable Interface (Page 1)

Objects that can be written to the output stream are said to serializable

– Classes from which such objects are instantiated implement the Serializable
interface

To store an object, the JVM must store:

– The class name and its signature

– All current property (data field) values of the class and its superclasses

This process, called object serialization, is implemented in ObjectDataStream objects

Java API “StringBuilder”

The Serializable Interface (Page 2)

Format:

public class ClassName [extends ClassName] implements Serializable

{ …

Example:

public class Student extends Object implements Serializable

{ …

BinaryMiniQuiz2.java (Page 1)

Serializing Arrays (Page 1)

If all elements of an array are serializable, the array is serializable

An array can be saved using writeObject() and restored using readObject()

– Recall that arrays are objects

Serializing Arrays (Page 2)

Format for readObject():

type[] arrayObject = (castType[]) objectInputStreamObject.readObject();

– Method returns an object so it must be cast to the array object type

Example:

SuffolkResident[] student = (SuffolkResident[]) input.readObject();

Serializing Arrays (Page 3)

Format for writeObject():

objectInputStreamObject.readObject(arrayObject);

Example:

SuffolkResident[] student = new SuffolkResident[3];

…

output.writeObject(student);

Random Access Files (Page 1)

Refers to ability to access records from a data file at random

– The opposite of random access is sequential access in which data must be accessed
by passing through all intervening points

Enables reading or writing information from or to any point in the file

– In a sequential-access file, must be accessed starting from the beginning of the file

Random Access Files

Random Access Files (Page 2)

Disks are random access media

– Tapes are sequential access media

Sometimes also called direct access

The RandomAccessFile Class (Page 1)

Objects instantiated from this class have the ability to read and write randomly

Similar to FileWriter and FileReader in that a file can be specified on the system to
open when it is created it

– Use either “path/filename” string or File object

The RandomAccessFile Class (Page 2)

When opening a RandomAccessFile, indicate whether file just will be read from (“r”) or
also written to (“rw”)

– Must be able to read a file in order to write it

Located in the java.io package

import java.io.RandomAccessFile;

The RandomAccessFile Class (Page 3)

Format:

RandomAccessFile randomAccessObject = new RandomAccessFile("path/filename" |
fileObject, "r"/"rw");

– The strings “r” or “rw” are the access methods

Example:

RandomAccessFile studentFile = new RandomAccessFile("e:/studentFile.dat", "rw");

Random Access File Processing (Page 1)

After a random file is open, common read and write methods are defined in the
DataInput and DataOutput interfaces to perform I/O

– Class RandomAccessFile implements both DataInput and DataOutput

Random Access File Processing (Page 2)

For example:

– The writeInt() writes four bytes of numeric integer data to the file

– The readInt() reads four bytes of numeric integer data from the file

There are write and read methods for every primitive data type

The File Pointer

RandomAccessFile supports the notion of a file pointer:

– Indicates the current location in the file

– When the file is first created or opened, the file pointer is set to zero (0), indicating
the beginning of the file

– Calls to read and write methods advances the file pointer by the number of bytes
read or written

FilesStreams8.java (Page 1)

FilesStreams8.java (Page 2)

The seek() Method (Page 1)

A method of the RandomAccessFile class that sets moves the file-pointer position

– Measured in bytes from the beginning of file

– The location at which the next read or write operation will begin

The offset position often is calculated based upon which record is to be accessed next

The seek() Method (Page 2)

Format:

randomAccessObject.seek(long);

– long is a long integer value or variable, or an arithmetic expression that evaluates to
a long

Examples:

studentFile.seek(4);

studentFile.seek(4 * (courseNumber - 1));

The Data

The Index

FilesStreams9.java (Page 1)

FilesStreams9.java (Page 2)

FilesStreams9.java (Page 3)

FilesStreams10.java (Page 1)

FilesStreams10.java (Page 2)

FilesStreams10.java (Page 3)

The Data

Record Size

The Index

The length() Method for a RandomAccessFile Object

For a RandomAccessFile object, returns the length of the file measured in bytes

Format:

randomAccessFileName.length();

Example:

studentFile.seek(studentFile.length());

FilesStreams11.java (Page 1)

FilesStreams11.java (Page 2)

FilesStreams11.java (Page 3)

FilesStreams12.java (Page 1)

FilesStreams12.java (Page 2)

FilesStreams12.java (Page 3)

The readChar() Method for a RandomAccessFile Object

Reads a single character from an object instantiated from class RandomAccessFile

Format:

randomAccessFileObject.readChar();

Example:

chars[ctr] = inFile.readChar();

The getChars() Method for a String Object (Page 1)

Copies characters from String into a destination char array

Format:

stringObject.getChars(srcBegin, srcEnd, dest, destBegin);

– srcBegin—index of the first character to copy

– srcEnd—index after the last character to copy

– dest—the destination char array

– destBegin—start offset in destination char array

The getChars() Method for a String Object (Page 2)

Format:

stringObject.getChars(srcBegin, srcEnd, dest, destBegin);

Example:

outString.getChars(0, length, chars, 0);

– The variable chars is a char array

The writeChars() Method for a RandomAccessFile Object (Page 1)

Writes a String to as RandomAccessFile as a sequence of characters …

– Each character is written separately to the data output stream as though were being
written by the writeChar() method contained within a loop

The write operation starts at the current position of the file pointer

The writeChars() Method for a RandomAccessFile Object (Page 2)

Format:

randomAccessFileName.writeChars(String);

Example:

outFile.writeChars(new String(chars));

– The variable chars is a char array and String is a call to String constructor that takes
a char array

The DataInput and DataOutput Interfaces (Page 1)

DataInput—an interface that implements the reading bytes from a binary stream

– The bytes may be reconstructed into any of the Java primitive types

DataOutput—an interface that implements the writing bytes to a binary stream

– Data converted from any of the Java primitive types back to a series of bytes

The DataInput and DataOutput Interfaces (Page 2)

The RandomAccessFile class implements both the DataInput and DataOutput
interfaces

– Therefore a RandomAccessFile object “is a” DataInput object and “is a” DataOutput
object

Subtyping allows RandomAccessFile objects to be “assigned” to a DataInput or
DataOutput object

Found in the java.io package

import java.io.DataInput;

import java.io.DataOutput;

The DataInput and DataOutput Interfaces (Page 3)

Examples:

DataOutput courseFile = new RandomAccessFile("courseFile.dat", "rw")

– Subtyping when instantiating a RandomAccessFile object variable

public static String readFixedLengthString(int size, DataInput inFile)

– Subtyping when passing a RandomAccessFile object to a parameter variable

FixedLengthStringIO.java (Page 1)

FixedLengthStringIO.java (Page 2)

FixedLengthStringIO.java (Page 3)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

CST141—Binary I/O Page 6

Binary I/O

CST141

Binary Data

All data is stored in computers in binary format

– All ones (1) and zeros (0)

Text (including digits) is converted to some coding scheme (ASCII, Unicode, etc.)

Binary does not require conversions—the binary numeric value is written directly to the
file

InputStream and OutputStream

These are the abstract classes from which all binary input and output classes extend

An especially good example of inheritance from the Java API

All methods from all subclasses throw the checked IOException (or one of its
subclasses) which must be caught

– Must be imported from java.io

The Binary I/O Classes

The FileInputStream Class (Page 1)

Used for creating input streams that read only positive byte numeric data from a file

A subclass of InputStream

– Inherits the read() method that reads one byte of data to the stream

Located in the java.io package

import java.io.FileInputStream;

The FileInputStream Class (Page 2)

Format:

FileInputStream fileInputStreamObject = new FileInputStream("path/filename");

Throws a java.io.FileNotFoundException if the file does not exist

Throws a java.io.DirectoryNotFoundException if the folder on the drivedoes not exist

Examples:

FileInputStream input = new FileInputStream("temp.dat");

The FileOutputStream Class (Page 1)

Used for creating output stream objects that write only positive byte numeric data to a
file

A subclass of OutputStream

– Inherits the write() method that writes one byte of data to the stream

Located in the java.io package

import java.io.FileOutputStream;

The FileOutputStream Class (Page 2)

Format:

FileOutputStream fileOutputStreamObject = new FileOutputStream("path/filename");

Examples:

FileOutputStream input = new FileOutputStream("temp.dat");

The read() Method

A method of class FileInputStream (inherited from FileStream) that reads the next byte
of data from the input stream—from the file)

Format:

fileInputStreamObject.read();

Example:

byte credits = input.read();

The write() Method

A method of class FileInputStream (inherited from FileStream) that writes a specified
byte of data to the output stream—to the file)

Format:

fileOutputStreamObject.write(byteValue);

Example:

output.write(credits);

FileIO.java (Page 1)

FileIO.java (Page 2)

FileIO.java (Page 3)

FileIO.java (Page 4)

FileIO.java (Page 5)

FileIO.java (Page 6)

Filter Streams

The FilterInputStream and FilterOutputStream classes filter streams filter bytes for
some purpose

Subclasses of these two classes read and write integers, floats, strings, characters and
booleans

The DataInputStream Class (Page 1)

“Wraps” around a FileInputStream object to give it the ability to read integers, floats,
strings, booleans and characters

A subclass of FilterInputStream

Located in the java.io package

import java.io.DataInputStream;

The DataInputStream Class (Page 2)

Format:

DataInputStream dataInputStreamObject = new
DataInputStream(fileInputStreamObject);

Example:

DataInputStream input = new DataInputStream(new FileInputStream("temp.dat"));

The DataOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to give it the ability to write integers,
floats, strings, booleans and characters

A subclass of FilterOutputStream

Located in the java.io package

import java.io.DataOutputStream;

The DataOutputStream Class (Page 2)

Format:

DataOutputStream dataInputStreamObject = new
DataOutputStream(fileOutputStreamObject);

Example:

DataOutputStream input = new DataOutputStream(new FileOutputStream(
"temp.dat"));

Primitive Read Methods for Class DataInputStream (Page 1)

Reads primitives including integers, floats, booleans and characters from the input
stream—from a file):

– readByte()

– readChar()

– readFloat()

– readDouble()

– readInt()

– readLong()

– readShort()

– readBoolean()

Primitive Read Methods for Class DataInputStream (Page 2)

Format:

dataInputStreamObject.readPrimitive();

Example:

int credits = input.readInt();

The readUTF() Method

A method of class DataInputStream that reads a series of bytes from the input stream
that are in UTF-8 format and converts them into a string

Format:

dataInputStreamObject.readUTF();

Example:

String firstName = input.readUTF();

Primitive Write Methods for Class DataOutputStream (Page 1)

Writes primitives including integers, floats, booleans and characters to the output
stream—to a file):

– writeByte()

– writeChar()

– writeFloat()

– writeDouble()

– writeInt()

– writeLong()

– writeShort()

– writeBoolean()

Primitive Write Methods for Class DataOutputStream (Page 2)

Format:

dataOutputStreamObject.writePrimitive();

Example:

output.writeInt(credits);

The writeUTF() Method

A method of class DataInputString that converts a series of bytes into a string (UTF-8
format) and writes them into the output stream

Format:

dataInputStreamObject.readUTF();

Example:

ouput.readUTF(firstName);

DataIOStream.java (Page 1)

DataIOStream.java (Page 2)

DataIOStream.java (Page 3)

DataIOStream.java (Page 4)

DataIOStream.java (Page 5)

DataIOStream.java (Page 6)

Mini-Quiz No. 1 (Page 1)

Create a new BlueJ project named “binary-miniquizzes” and create a class named
“BinaryMiniQuiz1”

– Create a static void method output() and instantiate object variable output from
class DataOutputStream

– Use a for loop to iterate three times and get input from method showInputDialog()
for three fields

•productID—an int

• item—a String

•price—a double

– Write the three fields to the output object

BinaryMiniQuiz1.java (Page 1)

BinaryMiniQuiz1.java (Page 2)

Mini-Quiz No. 1 (Page 2)

Create a new BlueJ project named “binary-miniquizzes” and create a class named
“BinaryMiniQuiz1” (con):

– Create a static void method input() and instantiate an object variable input from
class DataInputStream

– Use a for loop to iterate through and read the three fields for all records from the
input object into a StringBuilder object with appropriate labels (see example above)

– Display all the data in a showMessageDialog()

BinaryMiniQuiz1.java (Page 3)

The BufferedInputStream Class (Page 1)

“Wraps” around a FileInputStream object to speed up input by reducing the number of
disk reads

The whole block of data is read into the RAM buffer at once

The BufferedInputStream Class (Page 2)

A subclass of FilterInputStream

It has no methods of its own—all are inherited from InputStream

Located in the java.io package

import java.io.BufferedInputStream;

The BufferedInputStream Class (Page 3)

Format:

BufferedInputStream bufferedInputStreamObject = new BufferedInputStream(
fileInputStreamObject);

Example:

BufferedInputStream input = new BufferedInputStream(new FileInputStream(
"temp.dat"));

The BufferedInputStream Class (Page 4)

A DataInputStream can be “wrapped” around the BufferedInputStream to provide
functionality for reading primitives and strings:

DataInputStream dataInputStreamObject = new DataOutputStream(new
BufferedInputStream(fileInputStreamObject));

Example:

DataInputStream input = new DataInputStream(new BufferedInputStream(new
FileInputStream("temp.dat")));

The BufferedOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to speed up output by reducing the number
of disk writes

The whole block of data first is written into the RAM buffer; when the buffer is full, the
block is written to disk

The BufferedOutputStream Class (Page 2)

A subclass of FilterOutputStream

It has no methods of its own—all are inherited from OutputStream

Located in the java.io package

import java.io.BufferedOutputStream;

The BufferedOutputStream Class (Page 3)

Format:

BufferedOutputStream bufferedOutputStreamObject = new BufferedOutputStream(
fileOutputStreamObject);

Example:

BufferedOutputStream output = new BufferedOutputStream(new FileOutputStream(
"temp.dat"));

The BufferedOutputStream Class (Page 4)

A DataOutputStream can be “wrapped” around the BufferedOutputStream to provide
functionality to write primitives and strings:

DataOutputStream dataOutputStreamObject = new DataOutputStream(new
BufferedOutputStream(fileOutputStreamObject));

Example:

DataOutputStream input = new DataOutputStream(new BufferedOutputStream(new
FileOutputStream("temp.dat")));

BufferedIOStream.java (Page 1)

BufferedIOStream.java (Page 2)

BufferedIOStream.java (Page 3)

BufferedIOStream.java (Page 4)

BufferedIOStream.java (Page 5)

BufferedIOStream.java (Page 6)

The ObjectInputStream Class (Page 1)

“Wraps” around a FileInputStream object to give it the ability to read “serializable”
objects from the input stream

Reads primitives and strings as well (contains all the methods of class
DataInputStream)

Located in the java.io package

import java.io.ObjectInputStream;

The ObjectInputStream Class (Page 2)

Format:

ObjectInputStream objectInputStreamObject = new ObjectInputStream(
fileInputStreamObject);

Example:

ObjectInputStream input = new ObjectInputStream(new FileInputStream(
"temp.dat"));

The ObjectOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to give it the ability to write “serializable”
objects to the output stream

Writes primitives and strings as well (contains all the methods of class
DataOutputStream)

Located in the java.io package

import java.io.ObjectOutputStream;

The ObjectOutputStream Class (Page 2)

Format:

ObjectOutputStream objectOutputStreamObject = new ObjectOutputStream(
fileOutputStreamObject);

Example:

ObjectOutputStream input = new ObjectOutputStream(new FileOutputStream(
"temp.dat"));

The readObject() Method

A method of class ObjectInputStream that reads a “serializable” object from the input
stream

May throw a ClassNotFoundException because when the JVM restores the object, it
must first load the class into RAM

Format:

objectInputStreamObject.readObject ();

Example:

SuffolkResident student = input.readObject();

The writeObject() Method

A method of class ObjectInputString that writes a “serializable” object into the output
stream

Format:

objectOutputStreamObject.writeObject(object);

Example:

output.writeObject(new SuffolkResident());

ObjectIOStream.java (Page 1)

ObjectIOStream.java (Page 2)

ObjectIOStream.java (Page 3)

ObjectIOStream.java (Page 4)

ObjectIOStream.java (Page 5)

ObjectIOStream.java (Page 6)

Mini-Quiz No. 2 (Page 1)

Open the BlueJ project “binary-miniquizzes” and create a class named
“BinaryMiniQuiz2”:

– Create a static void method output() and instantiate object variable output from
class ObjectOutputStream

– Instantiate an object from class StringBuilder

– Get input from method showInputDialog() for three fields

•productID—an int

• item—a String

•price—a double

– Write the input fields to the StringBuilder object with labels (see example above)

– Write the StringBuilder object to the output file

BinaryMiniQuiz2.java (Page 1)

BinaryMiniQuiz2.java (Page 2)

Mini-Quiz No. 2 (Page 2)

Open the BlueJ project “binary-miniquizzes” and create a class named
“BinaryMiniQuiz2” (con):

– Create a static void method input() and instantiate an object variable input from
class ObjectInputStream

– Read the StringBuilder object and display all the data in a showMessageDialog()

BinaryMiniQuiz2.java (Page 3)

The Serializable Interface (Page 1)

Objects that can be written to the output stream are said to serializable

– Classes from which such objects are instantiated implement the Serializable
interface

To store an object, the JVM must store:

– The class name and its signature

– All current property (data field) values of the class and its superclasses

This process, called object serialization, is implemented in ObjectDataStream objects

Java API “StringBuilder”

The Serializable Interface (Page 2)

Format:

public class ClassName [extends ClassName] implements Serializable

{ …

Example:

public class Student extends Object implements Serializable

{ …

BinaryMiniQuiz2.java (Page 1)

Serializing Arrays (Page 1)

If all elements of an array are serializable, the array is serializable

An array can be saved using writeObject() and restored using readObject()

– Recall that arrays are objects

Serializing Arrays (Page 2)

Format for readObject():

type[] arrayObject = (castType[]) objectInputStreamObject.readObject();

– Method returns an object so it must be cast to the array object type

Example:

SuffolkResident[] student = (SuffolkResident[]) input.readObject();

Serializing Arrays (Page 3)

Format for writeObject():

objectInputStreamObject.readObject(arrayObject);

Example:

SuffolkResident[] student = new SuffolkResident[3];

…

output.writeObject(student);

Random Access Files (Page 1)

Refers to ability to access records from a data file at random

– The opposite of random access is sequential access in which data must be accessed
by passing through all intervening points

Enables reading or writing information from or to any point in the file

– In a sequential-access file, must be accessed starting from the beginning of the file

Random Access Files

Random Access Files (Page 2)

Disks are random access media

– Tapes are sequential access media

Sometimes also called direct access

The RandomAccessFile Class (Page 1)

Objects instantiated from this class have the ability to read and write randomly

Similar to FileWriter and FileReader in that a file can be specified on the system to
open when it is created it

– Use either “path/filename” string or File object

The RandomAccessFile Class (Page 2)

When opening a RandomAccessFile, indicate whether file just will be read from (“r”) or
also written to (“rw”)

– Must be able to read a file in order to write it

Located in the java.io package

import java.io.RandomAccessFile;

The RandomAccessFile Class (Page 3)

Format:

RandomAccessFile randomAccessObject = new RandomAccessFile("path/filename" |
fileObject, "r"/"rw");

– The strings “r” or “rw” are the access methods

Example:

RandomAccessFile studentFile = new RandomAccessFile("e:/studentFile.dat", "rw");

Random Access File Processing (Page 1)

After a random file is open, common read and write methods are defined in the
DataInput and DataOutput interfaces to perform I/O

– Class RandomAccessFile implements both DataInput and DataOutput

Random Access File Processing (Page 2)

For example:

– The writeInt() writes four bytes of numeric integer data to the file

– The readInt() reads four bytes of numeric integer data from the file

There are write and read methods for every primitive data type

The File Pointer

RandomAccessFile supports the notion of a file pointer:

– Indicates the current location in the file

– When the file is first created or opened, the file pointer is set to zero (0), indicating
the beginning of the file

– Calls to read and write methods advances the file pointer by the number of bytes
read or written

FilesStreams8.java (Page 1)

FilesStreams8.java (Page 2)

The seek() Method (Page 1)

A method of the RandomAccessFile class that sets moves the file-pointer position

– Measured in bytes from the beginning of file

– The location at which the next read or write operation will begin

The offset position often is calculated based upon which record is to be accessed next

The seek() Method (Page 2)

Format:

randomAccessObject.seek(long);

– long is a long integer value or variable, or an arithmetic expression that evaluates to
a long

Examples:

studentFile.seek(4);

studentFile.seek(4 * (courseNumber - 1));

The Data

The Index

FilesStreams9.java (Page 1)

FilesStreams9.java (Page 2)

FilesStreams9.java (Page 3)

FilesStreams10.java (Page 1)

FilesStreams10.java (Page 2)

FilesStreams10.java (Page 3)

The Data

Record Size

The Index

The length() Method for a RandomAccessFile Object

For a RandomAccessFile object, returns the length of the file measured in bytes

Format:

randomAccessFileName.length();

Example:

studentFile.seek(studentFile.length());

FilesStreams11.java (Page 1)

FilesStreams11.java (Page 2)

FilesStreams11.java (Page 3)

FilesStreams12.java (Page 1)

FilesStreams12.java (Page 2)

FilesStreams12.java (Page 3)

The readChar() Method for a RandomAccessFile Object

Reads a single character from an object instantiated from class RandomAccessFile

Format:

randomAccessFileObject.readChar();

Example:

chars[ctr] = inFile.readChar();

The getChars() Method for a String Object (Page 1)

Copies characters from String into a destination char array

Format:

stringObject.getChars(srcBegin, srcEnd, dest, destBegin);

– srcBegin—index of the first character to copy

– srcEnd—index after the last character to copy

– dest—the destination char array

– destBegin—start offset in destination char array

The getChars() Method for a String Object (Page 2)

Format:

stringObject.getChars(srcBegin, srcEnd, dest, destBegin);

Example:

outString.getChars(0, length, chars, 0);

– The variable chars is a char array

The writeChars() Method for a RandomAccessFile Object (Page 1)

Writes a String to as RandomAccessFile as a sequence of characters …

– Each character is written separately to the data output stream as though were being
written by the writeChar() method contained within a loop

The write operation starts at the current position of the file pointer

The writeChars() Method for a RandomAccessFile Object (Page 2)

Format:

randomAccessFileName.writeChars(String);

Example:

outFile.writeChars(new String(chars));

– The variable chars is a char array and String is a call to String constructor that takes
a char array

The DataInput and DataOutput Interfaces (Page 1)

DataInput—an interface that implements the reading bytes from a binary stream

– The bytes may be reconstructed into any of the Java primitive types

DataOutput—an interface that implements the writing bytes to a binary stream

– Data converted from any of the Java primitive types back to a series of bytes

The DataInput and DataOutput Interfaces (Page 2)

The RandomAccessFile class implements both the DataInput and DataOutput
interfaces

– Therefore a RandomAccessFile object “is a” DataInput object and “is a” DataOutput
object

Subtyping allows RandomAccessFile objects to be “assigned” to a DataInput or
DataOutput object

Found in the java.io package

import java.io.DataInput;

import java.io.DataOutput;

The DataInput and DataOutput Interfaces (Page 3)

Examples:

DataOutput courseFile = new RandomAccessFile("courseFile.dat", "rw")

– Subtyping when instantiating a RandomAccessFile object variable

public static String readFixedLengthString(int size, DataInput inFile)

– Subtyping when passing a RandomAccessFile object to a parameter variable

FixedLengthStringIO.java (Page 1)

FixedLengthStringIO.java (Page 2)

FixedLengthStringIO.java (Page 3)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

Binary I/O

CST141

Binary Data

All data is stored in computers in binary format

– All ones (1) and zeros (0)

Text (including digits) is converted to some coding scheme (ASCII, Unicode, etc.)

Binary does not require conversions—the binary numeric value is written directly to the
file

InputStream and OutputStream

These are the abstract classes from which all binary input and output classes extend

An especially good example of inheritance from the Java API

All methods from all subclasses throw the checked IOException (or one of its
subclasses) which must be caught

– Must be imported from java.io

The Binary I/O Classes

The FileInputStream Class (Page 1)

Used for creating input streams that read only positive byte numeric data from a file

A subclass of InputStream

– Inherits the read() method that reads one byte of data to the stream

Located in the java.io package

import java.io.FileInputStream;

The FileInputStream Class (Page 2)

Format:

FileInputStream fileInputStreamObject = new FileInputStream("path/filename");

Throws a java.io.FileNotFoundException if the file does not exist

Throws a java.io.DirectoryNotFoundException if the folder on the drivedoes not exist

Examples:

FileInputStream input = new FileInputStream("temp.dat");

The FileOutputStream Class (Page 1)

Used for creating output stream objects that write only positive byte numeric data to a
file

A subclass of OutputStream

– Inherits the write() method that writes one byte of data to the stream

Located in the java.io package

import java.io.FileOutputStream;

The FileOutputStream Class (Page 2)

Format:

FileOutputStream fileOutputStreamObject = new FileOutputStream("path/filename");

Examples:

FileOutputStream input = new FileOutputStream("temp.dat");

The read() Method

A method of class FileInputStream (inherited from FileStream) that reads the next byte
of data from the input stream—from the file)

Format:

fileInputStreamObject.read();

Example:

byte credits = input.read();

The write() Method

A method of class FileInputStream (inherited from FileStream) that writes a specified
byte of data to the output stream—to the file)

Format:

fileOutputStreamObject.write(byteValue);

Example:

output.write(credits);

FileIO.java (Page 1)

FileIO.java (Page 2)

FileIO.java (Page 3)

FileIO.java (Page 4)

FileIO.java (Page 5)

FileIO.java (Page 6)

Filter Streams

The FilterInputStream and FilterOutputStream classes filter streams filter bytes for
some purpose

Subclasses of these two classes read and write integers, floats, strings, characters and
booleans

The DataInputStream Class (Page 1)

“Wraps” around a FileInputStream object to give it the ability to read integers, floats,
strings, booleans and characters

A subclass of FilterInputStream

Located in the java.io package

import java.io.DataInputStream;

The DataInputStream Class (Page 2)

Format:

DataInputStream dataInputStreamObject = new
DataInputStream(fileInputStreamObject);

Example:

DataInputStream input = new DataInputStream(new FileInputStream("temp.dat"));

The DataOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to give it the ability to write integers,
floats, strings, booleans and characters

A subclass of FilterOutputStream

Located in the java.io package

import java.io.DataOutputStream;

The DataOutputStream Class (Page 2)

Format:

DataOutputStream dataInputStreamObject = new
DataOutputStream(fileOutputStreamObject);

Example:

DataOutputStream input = new DataOutputStream(new FileOutputStream(
"temp.dat"));

Primitive Read Methods for Class DataInputStream (Page 1)

Reads primitives including integers, floats, booleans and characters from the input
stream—from a file):

– readByte()

– readChar()

– readFloat()

– readDouble()

– readInt()

– readLong()

– readShort()

– readBoolean()

Primitive Read Methods for Class DataInputStream (Page 2)

Format:

dataInputStreamObject.readPrimitive();

Example:

int credits = input.readInt();

The readUTF() Method

A method of class DataInputStream that reads a series of bytes from the input stream
that are in UTF-8 format and converts them into a string

Format:

dataInputStreamObject.readUTF();

Example:

String firstName = input.readUTF();

Primitive Write Methods for Class DataOutputStream (Page 1)

Writes primitives including integers, floats, booleans and characters to the output
stream—to a file):

– writeByte()

– writeChar()

– writeFloat()

– writeDouble()

– writeInt()

– writeLong()

– writeShort()

– writeBoolean()

Primitive Write Methods for Class DataOutputStream (Page 2)

Format:

dataOutputStreamObject.writePrimitive();

Example:

output.writeInt(credits);

The writeUTF() Method

A method of class DataInputString that converts a series of bytes into a string (UTF-8
format) and writes them into the output stream

Format:

dataInputStreamObject.readUTF();

Example:

ouput.readUTF(firstName);

DataIOStream.java (Page 1)

DataIOStream.java (Page 2)

DataIOStream.java (Page 3)

DataIOStream.java (Page 4)

DataIOStream.java (Page 5)

DataIOStream.java (Page 6)

Mini-Quiz No. 1 (Page 1)

Create a new BlueJ project named “binary-miniquizzes” and create a class named
“BinaryMiniQuiz1”

– Create a static void method output() and instantiate object variable output from
class DataOutputStream

– Use a for loop to iterate three times and get input from method showInputDialog()
for three fields

•productID—an int

• item—a String

•price—a double

– Write the three fields to the output object

BinaryMiniQuiz1.java (Page 1)

BinaryMiniQuiz1.java (Page 2)

Mini-Quiz No. 1 (Page 2)

Create a new BlueJ project named “binary-miniquizzes” and create a class named
“BinaryMiniQuiz1” (con):

– Create a static void method input() and instantiate an object variable input from
class DataInputStream

– Use a for loop to iterate through and read the three fields for all records from the
input object into a StringBuilder object with appropriate labels (see example above)

– Display all the data in a showMessageDialog()

BinaryMiniQuiz1.java (Page 3)

The BufferedInputStream Class (Page 1)

“Wraps” around a FileInputStream object to speed up input by reducing the number of
disk reads

The whole block of data is read into the RAM buffer at once

The BufferedInputStream Class (Page 2)

A subclass of FilterInputStream

It has no methods of its own—all are inherited from InputStream

Located in the java.io package

import java.io.BufferedInputStream;

The BufferedInputStream Class (Page 3)

Format:

BufferedInputStream bufferedInputStreamObject = new BufferedInputStream(
fileInputStreamObject);

Example:

BufferedInputStream input = new BufferedInputStream(new FileInputStream(
"temp.dat"));

The BufferedInputStream Class (Page 4)

A DataInputStream can be “wrapped” around the BufferedInputStream to provide
functionality for reading primitives and strings:

DataInputStream dataInputStreamObject = new DataOutputStream(new
BufferedInputStream(fileInputStreamObject));

Example:

DataInputStream input = new DataInputStream(new BufferedInputStream(new
FileInputStream("temp.dat")));

The BufferedOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to speed up output by reducing the number
of disk writes

The whole block of data first is written into the RAM buffer; when the buffer is full, the
block is written to disk

The BufferedOutputStream Class (Page 2)

A subclass of FilterOutputStream

It has no methods of its own—all are inherited from OutputStream

Located in the java.io package

import java.io.BufferedOutputStream;

The BufferedOutputStream Class (Page 3)

Format:

BufferedOutputStream bufferedOutputStreamObject = new BufferedOutputStream(
fileOutputStreamObject);

Example:

BufferedOutputStream output = new BufferedOutputStream(new FileOutputStream(
"temp.dat"));

The BufferedOutputStream Class (Page 4)

A DataOutputStream can be “wrapped” around the BufferedOutputStream to provide
functionality to write primitives and strings:

DataOutputStream dataOutputStreamObject = new DataOutputStream(new
BufferedOutputStream(fileOutputStreamObject));

Example:

DataOutputStream input = new DataOutputStream(new BufferedOutputStream(new
FileOutputStream("temp.dat")));

BufferedIOStream.java (Page 1)

BufferedIOStream.java (Page 2)

BufferedIOStream.java (Page 3)

BufferedIOStream.java (Page 4)

BufferedIOStream.java (Page 5)

BufferedIOStream.java (Page 6)

The ObjectInputStream Class (Page 1)

“Wraps” around a FileInputStream object to give it the ability to read “serializable”
objects from the input stream

Reads primitives and strings as well (contains all the methods of class
DataInputStream)

Located in the java.io package

import java.io.ObjectInputStream;

The ObjectInputStream Class (Page 2)

Format:

ObjectInputStream objectInputStreamObject = new ObjectInputStream(
fileInputStreamObject);

Example:

ObjectInputStream input = new ObjectInputStream(new FileInputStream(
"temp.dat"));

The ObjectOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to give it the ability to write “serializable”
objects to the output stream

Writes primitives and strings as well (contains all the methods of class
DataOutputStream)

Located in the java.io package

import java.io.ObjectOutputStream;

The ObjectOutputStream Class (Page 2)

Format:

ObjectOutputStream objectOutputStreamObject = new ObjectOutputStream(
fileOutputStreamObject);

Example:

ObjectOutputStream input = new ObjectOutputStream(new FileOutputStream(
"temp.dat"));

The readObject() Method

A method of class ObjectInputStream that reads a “serializable” object from the input
stream

May throw a ClassNotFoundException because when the JVM restores the object, it
must first load the class into RAM

Format:

objectInputStreamObject.readObject ();

Example:

SuffolkResident student = input.readObject();

The writeObject() Method

A method of class ObjectInputString that writes a “serializable” object into the output
stream

Format:

objectOutputStreamObject.writeObject(object);

Example:

output.writeObject(new SuffolkResident());

ObjectIOStream.java (Page 1)

ObjectIOStream.java (Page 2)

ObjectIOStream.java (Page 3)

ObjectIOStream.java (Page 4)

ObjectIOStream.java (Page 5)

ObjectIOStream.java (Page 6)

Mini-Quiz No. 2 (Page 1)

Open the BlueJ project “binary-miniquizzes” and create a class named
“BinaryMiniQuiz2”:

– Create a static void method output() and instantiate object variable output from
class ObjectOutputStream

– Instantiate an object from class StringBuilder

– Get input from method showInputDialog() for three fields

•productID—an int

• item—a String

•price—a double

– Write the input fields to the StringBuilder object with labels (see example above)

– Write the StringBuilder object to the output file

BinaryMiniQuiz2.java (Page 1)

BinaryMiniQuiz2.java (Page 2)

Mini-Quiz No. 2 (Page 2)

Open the BlueJ project “binary-miniquizzes” and create a class named
“BinaryMiniQuiz2” (con):

– Create a static void method input() and instantiate an object variable input from
class ObjectInputStream

– Read the StringBuilder object and display all the data in a showMessageDialog()

BinaryMiniQuiz2.java (Page 3)

The Serializable Interface (Page 1)

Objects that can be written to the output stream are said to serializable

– Classes from which such objects are instantiated implement the Serializable
interface

To store an object, the JVM must store:

– The class name and its signature

– All current property (data field) values of the class and its superclasses

This process, called object serialization, is implemented in ObjectDataStream objects

Java API “StringBuilder”

The Serializable Interface (Page 2)

Format:

public class ClassName [extends ClassName] implements Serializable

{ …

Example:

public class Student extends Object implements Serializable

{ …

BinaryMiniQuiz2.java (Page 1)

Serializing Arrays (Page 1)

If all elements of an array are serializable, the array is serializable

An array can be saved using writeObject() and restored using readObject()

– Recall that arrays are objects

Serializing Arrays (Page 2)

Format for readObject():

type[] arrayObject = (castType[]) objectInputStreamObject.readObject();

– Method returns an object so it must be cast to the array object type

Example:

SuffolkResident[] student = (SuffolkResident[]) input.readObject();

Serializing Arrays (Page 3)

Format for writeObject():

objectInputStreamObject.readObject(arrayObject);

Example:

SuffolkResident[] student = new SuffolkResident[3];

…

output.writeObject(student);

Random Access Files (Page 1)

Refers to ability to access records from a data file at random

– The opposite of random access is sequential access in which data must be accessed
by passing through all intervening points

Enables reading or writing information from or to any point in the file

– In a sequential-access file, must be accessed starting from the beginning of the file

Random Access Files

Random Access Files (Page 2)

Disks are random access media

– Tapes are sequential access media

Sometimes also called direct access

The RandomAccessFile Class (Page 1)

Objects instantiated from this class have the ability to read and write randomly

Similar to FileWriter and FileReader in that a file can be specified on the system to
open when it is created it

– Use either “path/filename” string or File object

The RandomAccessFile Class (Page 2)

When opening a RandomAccessFile, indicate whether file just will be read from (“r”) or
also written to (“rw”)

– Must be able to read a file in order to write it

Located in the java.io package

import java.io.RandomAccessFile;

The RandomAccessFile Class (Page 3)

Format:

RandomAccessFile randomAccessObject = new RandomAccessFile("path/filename" |
fileObject, "r"/"rw");

– The strings “r” or “rw” are the access methods

Example:

RandomAccessFile studentFile = new RandomAccessFile("e:/studentFile.dat", "rw");

Random Access File Processing (Page 1)

After a random file is open, common read and write methods are defined in the
DataInput and DataOutput interfaces to perform I/O

– Class RandomAccessFile implements both DataInput and DataOutput

Random Access File Processing (Page 2)

For example:

– The writeInt() writes four bytes of numeric integer data to the file

– The readInt() reads four bytes of numeric integer data from the file

There are write and read methods for every primitive data type

The File Pointer

RandomAccessFile supports the notion of a file pointer:

– Indicates the current location in the file

– When the file is first created or opened, the file pointer is set to zero (0), indicating
the beginning of the file

– Calls to read and write methods advances the file pointer by the number of bytes
read or written

FilesStreams8.java (Page 1)

FilesStreams8.java (Page 2)

The seek() Method (Page 1)

A method of the RandomAccessFile class that sets moves the file-pointer position

– Measured in bytes from the beginning of file

– The location at which the next read or write operation will begin

The offset position often is calculated based upon which record is to be accessed next

The seek() Method (Page 2)

Format:

randomAccessObject.seek(long);

– long is a long integer value or variable, or an arithmetic expression that evaluates to
a long

Examples:

studentFile.seek(4);

studentFile.seek(4 * (courseNumber - 1));

The Data

The Index

FilesStreams9.java (Page 1)

FilesStreams9.java (Page 2)

FilesStreams9.java (Page 3)

FilesStreams10.java (Page 1)

FilesStreams10.java (Page 2)

FilesStreams10.java (Page 3)

The Data

Record Size

The Index

The length() Method for a RandomAccessFile Object

For a RandomAccessFile object, returns the length of the file measured in bytes

Format:

randomAccessFileName.length();

Example:

studentFile.seek(studentFile.length());

FilesStreams11.java (Page 1)

FilesStreams11.java (Page 2)

FilesStreams11.java (Page 3)

FilesStreams12.java (Page 1)

FilesStreams12.java (Page 2)

FilesStreams12.java (Page 3)

The readChar() Method for a RandomAccessFile Object

Reads a single character from an object instantiated from class RandomAccessFile

Format:

randomAccessFileObject.readChar();

Example:

chars[ctr] = inFile.readChar();

The getChars() Method for a String Object (Page 1)

Copies characters from String into a destination char array

Format:

stringObject.getChars(srcBegin, srcEnd, dest, destBegin);

– srcBegin—index of the first character to copy

– srcEnd—index after the last character to copy

– dest—the destination char array

– destBegin—start offset in destination char array

The getChars() Method for a String Object (Page 2)

Format:

stringObject.getChars(srcBegin, srcEnd, dest, destBegin);

Example:

outString.getChars(0, length, chars, 0);

– The variable chars is a char array

The writeChars() Method for a RandomAccessFile Object (Page 1)

Writes a String to as RandomAccessFile as a sequence of characters …

– Each character is written separately to the data output stream as though were being
written by the writeChar() method contained within a loop

The write operation starts at the current position of the file pointer

The writeChars() Method for a RandomAccessFile Object (Page 2)

Format:

randomAccessFileName.writeChars(String);

Example:

outFile.writeChars(new String(chars));

– The variable chars is a char array and String is a call to String constructor that takes
a char array

The DataInput and DataOutput Interfaces (Page 1)

DataInput—an interface that implements the reading bytes from a binary stream

– The bytes may be reconstructed into any of the Java primitive types

DataOutput—an interface that implements the writing bytes to a binary stream

– Data converted from any of the Java primitive types back to a series of bytes

The DataInput and DataOutput Interfaces (Page 2)

The RandomAccessFile class implements both the DataInput and DataOutput
interfaces

– Therefore a RandomAccessFile object “is a” DataInput object and “is a” DataOutput
object

Subtyping allows RandomAccessFile objects to be “assigned” to a DataInput or
DataOutput object

Found in the java.io package

import java.io.DataInput;

import java.io.DataOutput;

The DataInput and DataOutput Interfaces (Page 3)

Examples:

DataOutput courseFile = new RandomAccessFile("courseFile.dat", "rw")

– Subtyping when instantiating a RandomAccessFile object variable

public static String readFixedLengthString(int size, DataInput inFile)

– Subtyping when passing a RandomAccessFile object to a parameter variable

FixedLengthStringIO.java (Page 1)

FixedLengthStringIO.java (Page 2)

FixedLengthStringIO.java (Page 3)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

Binary I/O

CST141

Binary Data

All data is stored in computers in binary format

– All ones (1) and zeros (0)

Text (including digits) is converted to some coding scheme (ASCII, Unicode, etc.)

Binary does not require conversions—the binary numeric value is written directly to the
file

InputStream and OutputStream

These are the abstract classes from which all binary input and output classes extend

An especially good example of inheritance from the Java API

All methods from all subclasses throw the checked IOException (or one of its
subclasses) which must be caught

– Must be imported from java.io

The Binary I/O Classes

The FileInputStream Class (Page 1)

Used for creating input streams that read only positive byte numeric data from a file

A subclass of InputStream

– Inherits the read() method that reads one byte of data to the stream

Located in the java.io package

import java.io.FileInputStream;

The FileInputStream Class (Page 2)

Format:

FileInputStream fileInputStreamObject = new FileInputStream("path/filename");

Throws a java.io.FileNotFoundException if the file does not exist

Throws a java.io.DirectoryNotFoundException if the folder on the drivedoes not exist

Examples:

FileInputStream input = new FileInputStream("temp.dat");

The FileOutputStream Class (Page 1)

Used for creating output stream objects that write only positive byte numeric data to a
file

A subclass of OutputStream

– Inherits the write() method that writes one byte of data to the stream

Located in the java.io package

import java.io.FileOutputStream;

The FileOutputStream Class (Page 2)

Format:

FileOutputStream fileOutputStreamObject = new FileOutputStream("path/filename");

Examples:

FileOutputStream input = new FileOutputStream("temp.dat");

The read() Method

A method of class FileInputStream (inherited from FileStream) that reads the next byte
of data from the input stream—from the file)

Format:

fileInputStreamObject.read();

Example:

byte credits = input.read();

The write() Method

A method of class FileInputStream (inherited from FileStream) that writes a specified
byte of data to the output stream—to the file)

Format:

fileOutputStreamObject.write(byteValue);

Example:

output.write(credits);

FileIO.java (Page 1)

FileIO.java (Page 2)

FileIO.java (Page 3)

FileIO.java (Page 4)

FileIO.java (Page 5)

FileIO.java (Page 6)

Filter Streams

The FilterInputStream and FilterOutputStream classes filter streams filter bytes for
some purpose

Subclasses of these two classes read and write integers, floats, strings, characters and
booleans

The DataInputStream Class (Page 1)

“Wraps” around a FileInputStream object to give it the ability to read integers, floats,
strings, booleans and characters

A subclass of FilterInputStream

Located in the java.io package

import java.io.DataInputStream;

The DataInputStream Class (Page 2)

Format:

DataInputStream dataInputStreamObject = new
DataInputStream(fileInputStreamObject);

Example:

DataInputStream input = new DataInputStream(new FileInputStream("temp.dat"));

The DataOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to give it the ability to write integers,
floats, strings, booleans and characters

A subclass of FilterOutputStream

Located in the java.io package

import java.io.DataOutputStream;

The DataOutputStream Class (Page 2)

Format:

DataOutputStream dataInputStreamObject = new
DataOutputStream(fileOutputStreamObject);

Example:

DataOutputStream input = new DataOutputStream(new FileOutputStream(
"temp.dat"));

Primitive Read Methods for Class DataInputStream (Page 1)

Reads primitives including integers, floats, booleans and characters from the input
stream—from a file):

– readByte()

– readChar()

– readFloat()

– readDouble()

– readInt()

– readLong()

– readShort()

– readBoolean()

Primitive Read Methods for Class DataInputStream (Page 2)

Format:

dataInputStreamObject.readPrimitive();

Example:

int credits = input.readInt();

The readUTF() Method

A method of class DataInputStream that reads a series of bytes from the input stream
that are in UTF-8 format and converts them into a string

Format:

dataInputStreamObject.readUTF();

Example:

String firstName = input.readUTF();

Primitive Write Methods for Class DataOutputStream (Page 1)

Writes primitives including integers, floats, booleans and characters to the output
stream—to a file):

– writeByte()

– writeChar()

– writeFloat()

– writeDouble()

– writeInt()

– writeLong()

– writeShort()

– writeBoolean()

Primitive Write Methods for Class DataOutputStream (Page 2)

Format:

dataOutputStreamObject.writePrimitive();

Example:

output.writeInt(credits);

The writeUTF() Method

A method of class DataInputString that converts a series of bytes into a string (UTF-8
format) and writes them into the output stream

Format:

dataInputStreamObject.readUTF();

Example:

ouput.readUTF(firstName);

DataIOStream.java (Page 1)

DataIOStream.java (Page 2)

DataIOStream.java (Page 3)

DataIOStream.java (Page 4)

DataIOStream.java (Page 5)

DataIOStream.java (Page 6)

Mini-Quiz No. 1 (Page 1)

Create a new BlueJ project named “binary-miniquizzes” and create a class named
“BinaryMiniQuiz1”

– Create a static void method output() and instantiate object variable output from
class DataOutputStream

– Use a for loop to iterate three times and get input from method showInputDialog()
for three fields

•productID—an int

• item—a String

•price—a double

– Write the three fields to the output object

BinaryMiniQuiz1.java (Page 1)

BinaryMiniQuiz1.java (Page 2)

Mini-Quiz No. 1 (Page 2)

Create a new BlueJ project named “binary-miniquizzes” and create a class named
“BinaryMiniQuiz1” (con):

– Create a static void method input() and instantiate an object variable input from
class DataInputStream

– Use a for loop to iterate through and read the three fields for all records from the
input object into a StringBuilder object with appropriate labels (see example above)

– Display all the data in a showMessageDialog()

BinaryMiniQuiz1.java (Page 3)

The BufferedInputStream Class (Page 1)

“Wraps” around a FileInputStream object to speed up input by reducing the number of
disk reads

The whole block of data is read into the RAM buffer at once

The BufferedInputStream Class (Page 2)

A subclass of FilterInputStream

It has no methods of its own—all are inherited from InputStream

Located in the java.io package

import java.io.BufferedInputStream;

The BufferedInputStream Class (Page 3)

Format:

BufferedInputStream bufferedInputStreamObject = new BufferedInputStream(
fileInputStreamObject);

Example:

BufferedInputStream input = new BufferedInputStream(new FileInputStream(
"temp.dat"));

The BufferedInputStream Class (Page 4)

A DataInputStream can be “wrapped” around the BufferedInputStream to provide
functionality for reading primitives and strings:

DataInputStream dataInputStreamObject = new DataOutputStream(new
BufferedInputStream(fileInputStreamObject));

Example:

DataInputStream input = new DataInputStream(new BufferedInputStream(new
FileInputStream("temp.dat")));

The BufferedOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to speed up output by reducing the number
of disk writes

The whole block of data first is written into the RAM buffer; when the buffer is full, the
block is written to disk

The BufferedOutputStream Class (Page 2)

A subclass of FilterOutputStream

It has no methods of its own—all are inherited from OutputStream

Located in the java.io package

import java.io.BufferedOutputStream;

The BufferedOutputStream Class (Page 3)

Format:

BufferedOutputStream bufferedOutputStreamObject = new BufferedOutputStream(
fileOutputStreamObject);

Example:

BufferedOutputStream output = new BufferedOutputStream(new FileOutputStream(
"temp.dat"));

The BufferedOutputStream Class (Page 4)

A DataOutputStream can be “wrapped” around the BufferedOutputStream to provide
functionality to write primitives and strings:

DataOutputStream dataOutputStreamObject = new DataOutputStream(new
BufferedOutputStream(fileOutputStreamObject));

Example:

DataOutputStream input = new DataOutputStream(new BufferedOutputStream(new
FileOutputStream("temp.dat")));

BufferedIOStream.java (Page 1)

BufferedIOStream.java (Page 2)

BufferedIOStream.java (Page 3)

BufferedIOStream.java (Page 4)

BufferedIOStream.java (Page 5)

BufferedIOStream.java (Page 6)

The ObjectInputStream Class (Page 1)

“Wraps” around a FileInputStream object to give it the ability to read “serializable”
objects from the input stream

Reads primitives and strings as well (contains all the methods of class
DataInputStream)

Located in the java.io package

import java.io.ObjectInputStream;

The ObjectInputStream Class (Page 2)

Format:

ObjectInputStream objectInputStreamObject = new ObjectInputStream(
fileInputStreamObject);

Example:

ObjectInputStream input = new ObjectInputStream(new FileInputStream(
"temp.dat"));

The ObjectOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to give it the ability to write “serializable”
objects to the output stream

Writes primitives and strings as well (contains all the methods of class
DataOutputStream)

Located in the java.io package

import java.io.ObjectOutputStream;

The ObjectOutputStream Class (Page 2)

Format:

ObjectOutputStream objectOutputStreamObject = new ObjectOutputStream(
fileOutputStreamObject);

Example:

ObjectOutputStream input = new ObjectOutputStream(new FileOutputStream(
"temp.dat"));

The readObject() Method

A method of class ObjectInputStream that reads a “serializable” object from the input
stream

May throw a ClassNotFoundException because when the JVM restores the object, it
must first load the class into RAM

Format:

objectInputStreamObject.readObject ();

Example:

SuffolkResident student = input.readObject();

The writeObject() Method

A method of class ObjectInputString that writes a “serializable” object into the output
stream

Format:

objectOutputStreamObject.writeObject(object);

Example:

output.writeObject(new SuffolkResident());

ObjectIOStream.java (Page 1)

ObjectIOStream.java (Page 2)

ObjectIOStream.java (Page 3)

ObjectIOStream.java (Page 4)

ObjectIOStream.java (Page 5)

ObjectIOStream.java (Page 6)

Mini-Quiz No. 2 (Page 1)

Open the BlueJ project “binary-miniquizzes” and create a class named
“BinaryMiniQuiz2”:

– Create a static void method output() and instantiate object variable output from
class ObjectOutputStream

– Instantiate an object from class StringBuilder

– Get input from method showInputDialog() for three fields

•productID—an int

• item—a String

•price—a double

– Write the input fields to the StringBuilder object with labels (see example above)

– Write the StringBuilder object to the output file

BinaryMiniQuiz2.java (Page 1)

BinaryMiniQuiz2.java (Page 2)

Mini-Quiz No. 2 (Page 2)

Open the BlueJ project “binary-miniquizzes” and create a class named
“BinaryMiniQuiz2” (con):

– Create a static void method input() and instantiate an object variable input from
class ObjectInputStream

– Read the StringBuilder object and display all the data in a showMessageDialog()

BinaryMiniQuiz2.java (Page 3)

The Serializable Interface (Page 1)

Objects that can be written to the output stream are said to serializable

– Classes from which such objects are instantiated implement the Serializable
interface

To store an object, the JVM must store:

– The class name and its signature

– All current property (data field) values of the class and its superclasses

This process, called object serialization, is implemented in ObjectDataStream objects

Java API “StringBuilder”

The Serializable Interface (Page 2)

Format:

public class ClassName [extends ClassName] implements Serializable

{ …

Example:

public class Student extends Object implements Serializable

{ …

BinaryMiniQuiz2.java (Page 1)

Serializing Arrays (Page 1)

If all elements of an array are serializable, the array is serializable

An array can be saved using writeObject() and restored using readObject()

– Recall that arrays are objects

Serializing Arrays (Page 2)

Format for readObject():

type[] arrayObject = (castType[]) objectInputStreamObject.readObject();

– Method returns an object so it must be cast to the array object type

Example:

SuffolkResident[] student = (SuffolkResident[]) input.readObject();

Serializing Arrays (Page 3)

Format for writeObject():

objectInputStreamObject.readObject(arrayObject);

Example:

SuffolkResident[] student = new SuffolkResident[3];

…

output.writeObject(student);

Random Access Files (Page 1)

Refers to ability to access records from a data file at random

– The opposite of random access is sequential access in which data must be accessed
by passing through all intervening points

Enables reading or writing information from or to any point in the file

– In a sequential-access file, must be accessed starting from the beginning of the file

Random Access Files

Random Access Files (Page 2)

Disks are random access media

– Tapes are sequential access media

Sometimes also called direct access

The RandomAccessFile Class (Page 1)

Objects instantiated from this class have the ability to read and write randomly

Similar to FileWriter and FileReader in that a file can be specified on the system to
open when it is created it

– Use either “path/filename” string or File object

The RandomAccessFile Class (Page 2)

When opening a RandomAccessFile, indicate whether file just will be read from (“r”) or
also written to (“rw”)

– Must be able to read a file in order to write it

Located in the java.io package

import java.io.RandomAccessFile;

The RandomAccessFile Class (Page 3)

Format:

RandomAccessFile randomAccessObject = new RandomAccessFile("path/filename" |
fileObject, "r"/"rw");

– The strings “r” or “rw” are the access methods

Example:

RandomAccessFile studentFile = new RandomAccessFile("e:/studentFile.dat", "rw");

Random Access File Processing (Page 1)

After a random file is open, common read and write methods are defined in the
DataInput and DataOutput interfaces to perform I/O

– Class RandomAccessFile implements both DataInput and DataOutput

Random Access File Processing (Page 2)

For example:

– The writeInt() writes four bytes of numeric integer data to the file

– The readInt() reads four bytes of numeric integer data from the file

There are write and read methods for every primitive data type

The File Pointer

RandomAccessFile supports the notion of a file pointer:

– Indicates the current location in the file

– When the file is first created or opened, the file pointer is set to zero (0), indicating
the beginning of the file

– Calls to read and write methods advances the file pointer by the number of bytes
read or written

FilesStreams8.java (Page 1)

FilesStreams8.java (Page 2)

The seek() Method (Page 1)

A method of the RandomAccessFile class that sets moves the file-pointer position

– Measured in bytes from the beginning of file

– The location at which the next read or write operation will begin

The offset position often is calculated based upon which record is to be accessed next

The seek() Method (Page 2)

Format:

randomAccessObject.seek(long);

– long is a long integer value or variable, or an arithmetic expression that evaluates to
a long

Examples:

studentFile.seek(4);

studentFile.seek(4 * (courseNumber - 1));

The Data

The Index

FilesStreams9.java (Page 1)

FilesStreams9.java (Page 2)

FilesStreams9.java (Page 3)

FilesStreams10.java (Page 1)

FilesStreams10.java (Page 2)

FilesStreams10.java (Page 3)

The Data

Record Size

The Index

The length() Method for a RandomAccessFile Object

For a RandomAccessFile object, returns the length of the file measured in bytes

Format:

randomAccessFileName.length();

Example:

studentFile.seek(studentFile.length());

FilesStreams11.java (Page 1)

FilesStreams11.java (Page 2)

FilesStreams11.java (Page 3)

FilesStreams12.java (Page 1)

FilesStreams12.java (Page 2)

FilesStreams12.java (Page 3)

The readChar() Method for a RandomAccessFile Object

Reads a single character from an object instantiated from class RandomAccessFile

Format:

randomAccessFileObject.readChar();

Example:

chars[ctr] = inFile.readChar();

The getChars() Method for a String Object (Page 1)

Copies characters from String into a destination char array

Format:

stringObject.getChars(srcBegin, srcEnd, dest, destBegin);

– srcBegin—index of the first character to copy

– srcEnd—index after the last character to copy

– dest—the destination char array

– destBegin—start offset in destination char array

The getChars() Method for a String Object (Page 2)

Format:

stringObject.getChars(srcBegin, srcEnd, dest, destBegin);

Example:

outString.getChars(0, length, chars, 0);

– The variable chars is a char array

The writeChars() Method for a RandomAccessFile Object (Page 1)

Writes a String to as RandomAccessFile as a sequence of characters …

– Each character is written separately to the data output stream as though were being
written by the writeChar() method contained within a loop

The write operation starts at the current position of the file pointer

The writeChars() Method for a RandomAccessFile Object (Page 2)

Format:

randomAccessFileName.writeChars(String);

Example:

outFile.writeChars(new String(chars));

– The variable chars is a char array and String is a call to String constructor that takes
a char array

The DataInput and DataOutput Interfaces (Page 1)

DataInput—an interface that implements the reading bytes from a binary stream

– The bytes may be reconstructed into any of the Java primitive types

DataOutput—an interface that implements the writing bytes to a binary stream

– Data converted from any of the Java primitive types back to a series of bytes

The DataInput and DataOutput Interfaces (Page 2)

The RandomAccessFile class implements both the DataInput and DataOutput
interfaces

– Therefore a RandomAccessFile object “is a” DataInput object and “is a” DataOutput
object

Subtyping allows RandomAccessFile objects to be “assigned” to a DataInput or
DataOutput object

Found in the java.io package

import java.io.DataInput;

import java.io.DataOutput;

The DataInput and DataOutput Interfaces (Page 3)

Examples:

DataOutput courseFile = new RandomAccessFile("courseFile.dat", "rw")

– Subtyping when instantiating a RandomAccessFile object variable

public static String readFixedLengthString(int size, DataInput inFile)

– Subtyping when passing a RandomAccessFile object to a parameter variable

FixedLengthStringIO.java (Page 1)

FixedLengthStringIO.java (Page 2)

FixedLengthStringIO.java (Page 3)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

Binary I/O

CST141

Binary Data

All data is stored in computers in binary format

– All ones (1) and zeros (0)

Text (including digits) is converted to some coding scheme (ASCII, Unicode, etc.)

Binary does not require conversions—the binary numeric value is written directly to the
file

InputStream and OutputStream

These are the abstract classes from which all binary input and output classes extend

An especially good example of inheritance from the Java API

All methods from all subclasses throw the checked IOException (or one of its
subclasses) which must be caught

– Must be imported from java.io

The Binary I/O Classes

The FileInputStream Class (Page 1)

Used for creating input streams that read only positive byte numeric data from a file

A subclass of InputStream

– Inherits the read() method that reads one byte of data to the stream

Located in the java.io package

import java.io.FileInputStream;

The FileInputStream Class (Page 2)

Format:

FileInputStream fileInputStreamObject = new FileInputStream("path/filename");

Throws a java.io.FileNotFoundException if the file does not exist

Throws a java.io.DirectoryNotFoundException if the folder on the drivedoes not exist

Examples:

FileInputStream input = new FileInputStream("temp.dat");

The FileOutputStream Class (Page 1)

Used for creating output stream objects that write only positive byte numeric data to a
file

A subclass of OutputStream

– Inherits the write() method that writes one byte of data to the stream

Located in the java.io package

import java.io.FileOutputStream;

The FileOutputStream Class (Page 2)

Format:

FileOutputStream fileOutputStreamObject = new FileOutputStream("path/filename");

Examples:

FileOutputStream input = new FileOutputStream("temp.dat");

The read() Method

A method of class FileInputStream (inherited from FileStream) that reads the next byte
of data from the input stream—from the file)

Format:

fileInputStreamObject.read();

Example:

byte credits = input.read();

The write() Method

A method of class FileInputStream (inherited from FileStream) that writes a specified
byte of data to the output stream—to the file)

Format:

fileOutputStreamObject.write(byteValue);

Example:

output.write(credits);

FileIO.java (Page 1)

FileIO.java (Page 2)

FileIO.java (Page 3)

FileIO.java (Page 4)

FileIO.java (Page 5)

FileIO.java (Page 6)

Filter Streams

The FilterInputStream and FilterOutputStream classes filter streams filter bytes for
some purpose

Subclasses of these two classes read and write integers, floats, strings, characters and
booleans

The DataInputStream Class (Page 1)

“Wraps” around a FileInputStream object to give it the ability to read integers, floats,
strings, booleans and characters

A subclass of FilterInputStream

Located in the java.io package

import java.io.DataInputStream;

The DataInputStream Class (Page 2)

Format:

DataInputStream dataInputStreamObject = new
DataInputStream(fileInputStreamObject);

Example:

DataInputStream input = new DataInputStream(new FileInputStream("temp.dat"));

The DataOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to give it the ability to write integers,
floats, strings, booleans and characters

A subclass of FilterOutputStream

Located in the java.io package

import java.io.DataOutputStream;

The DataOutputStream Class (Page 2)

Format:

DataOutputStream dataInputStreamObject = new
DataOutputStream(fileOutputStreamObject);

Example:

DataOutputStream input = new DataOutputStream(new FileOutputStream(
"temp.dat"));

Primitive Read Methods for Class DataInputStream (Page 1)

Reads primitives including integers, floats, booleans and characters from the input
stream—from a file):

– readByte()

– readChar()

– readFloat()

– readDouble()

– readInt()

– readLong()

– readShort()

– readBoolean()

Primitive Read Methods for Class DataInputStream (Page 2)

Format:

dataInputStreamObject.readPrimitive();

Example:

int credits = input.readInt();

The readUTF() Method

A method of class DataInputStream that reads a series of bytes from the input stream
that are in UTF-8 format and converts them into a string

Format:

dataInputStreamObject.readUTF();

Example:

String firstName = input.readUTF();

Primitive Write Methods for Class DataOutputStream (Page 1)

Writes primitives including integers, floats, booleans and characters to the output
stream—to a file):

– writeByte()

– writeChar()

– writeFloat()

– writeDouble()

– writeInt()

– writeLong()

– writeShort()

– writeBoolean()

Primitive Write Methods for Class DataOutputStream (Page 2)

Format:

dataOutputStreamObject.writePrimitive();

Example:

output.writeInt(credits);

The writeUTF() Method

A method of class DataInputString that converts a series of bytes into a string (UTF-8
format) and writes them into the output stream

Format:

dataInputStreamObject.readUTF();

Example:

ouput.readUTF(firstName);

DataIOStream.java (Page 1)

DataIOStream.java (Page 2)

DataIOStream.java (Page 3)

DataIOStream.java (Page 4)

DataIOStream.java (Page 5)

DataIOStream.java (Page 6)

Mini-Quiz No. 1 (Page 1)

Create a new BlueJ project named “binary-miniquizzes” and create a class named
“BinaryMiniQuiz1”

– Create a static void method output() and instantiate object variable output from
class DataOutputStream

– Use a for loop to iterate three times and get input from method showInputDialog()
for three fields

•productID—an int

• item—a String

•price—a double

– Write the three fields to the output object

BinaryMiniQuiz1.java (Page 1)

BinaryMiniQuiz1.java (Page 2)

Mini-Quiz No. 1 (Page 2)

Create a new BlueJ project named “binary-miniquizzes” and create a class named
“BinaryMiniQuiz1” (con):

– Create a static void method input() and instantiate an object variable input from
class DataInputStream

– Use a for loop to iterate through and read the three fields for all records from the
input object into a StringBuilder object with appropriate labels (see example above)

– Display all the data in a showMessageDialog()

BinaryMiniQuiz1.java (Page 3)

The BufferedInputStream Class (Page 1)

“Wraps” around a FileInputStream object to speed up input by reducing the number of
disk reads

The whole block of data is read into the RAM buffer at once

The BufferedInputStream Class (Page 2)

A subclass of FilterInputStream

It has no methods of its own—all are inherited from InputStream

Located in the java.io package

import java.io.BufferedInputStream;

The BufferedInputStream Class (Page 3)

Format:

BufferedInputStream bufferedInputStreamObject = new BufferedInputStream(
fileInputStreamObject);

Example:

BufferedInputStream input = new BufferedInputStream(new FileInputStream(
"temp.dat"));

The BufferedInputStream Class (Page 4)

A DataInputStream can be “wrapped” around the BufferedInputStream to provide
functionality for reading primitives and strings:

DataInputStream dataInputStreamObject = new DataOutputStream(new
BufferedInputStream(fileInputStreamObject));

Example:

DataInputStream input = new DataInputStream(new BufferedInputStream(new
FileInputStream("temp.dat")));

The BufferedOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to speed up output by reducing the number
of disk writes

The whole block of data first is written into the RAM buffer; when the buffer is full, the
block is written to disk

The BufferedOutputStream Class (Page 2)

A subclass of FilterOutputStream

It has no methods of its own—all are inherited from OutputStream

Located in the java.io package

import java.io.BufferedOutputStream;

The BufferedOutputStream Class (Page 3)

Format:

BufferedOutputStream bufferedOutputStreamObject = new BufferedOutputStream(
fileOutputStreamObject);

Example:

BufferedOutputStream output = new BufferedOutputStream(new FileOutputStream(
"temp.dat"));

The BufferedOutputStream Class (Page 4)

A DataOutputStream can be “wrapped” around the BufferedOutputStream to provide
functionality to write primitives and strings:

DataOutputStream dataOutputStreamObject = new DataOutputStream(new
BufferedOutputStream(fileOutputStreamObject));

Example:

DataOutputStream input = new DataOutputStream(new BufferedOutputStream(new
FileOutputStream("temp.dat")));

BufferedIOStream.java (Page 1)

BufferedIOStream.java (Page 2)

BufferedIOStream.java (Page 3)

BufferedIOStream.java (Page 4)

BufferedIOStream.java (Page 5)

BufferedIOStream.java (Page 6)

The ObjectInputStream Class (Page 1)

“Wraps” around a FileInputStream object to give it the ability to read “serializable”
objects from the input stream

Reads primitives and strings as well (contains all the methods of class
DataInputStream)

Located in the java.io package

import java.io.ObjectInputStream;

The ObjectInputStream Class (Page 2)

Format:

ObjectInputStream objectInputStreamObject = new ObjectInputStream(
fileInputStreamObject);

Example:

ObjectInputStream input = new ObjectInputStream(new FileInputStream(
"temp.dat"));

The ObjectOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to give it the ability to write “serializable”
objects to the output stream

Writes primitives and strings as well (contains all the methods of class
DataOutputStream)

Located in the java.io package

import java.io.ObjectOutputStream;

The ObjectOutputStream Class (Page 2)

Format:

ObjectOutputStream objectOutputStreamObject = new ObjectOutputStream(
fileOutputStreamObject);

Example:

ObjectOutputStream input = new ObjectOutputStream(new FileOutputStream(
"temp.dat"));

The readObject() Method

A method of class ObjectInputStream that reads a “serializable” object from the input
stream

May throw a ClassNotFoundException because when the JVM restores the object, it
must first load the class into RAM

Format:

objectInputStreamObject.readObject ();

Example:

SuffolkResident student = input.readObject();

The writeObject() Method

A method of class ObjectInputString that writes a “serializable” object into the output
stream

Format:

objectOutputStreamObject.writeObject(object);

Example:

output.writeObject(new SuffolkResident());

ObjectIOStream.java (Page 1)

ObjectIOStream.java (Page 2)

ObjectIOStream.java (Page 3)

ObjectIOStream.java (Page 4)

ObjectIOStream.java (Page 5)

ObjectIOStream.java (Page 6)

Mini-Quiz No. 2 (Page 1)

Open the BlueJ project “binary-miniquizzes” and create a class named
“BinaryMiniQuiz2”:

– Create a static void method output() and instantiate object variable output from
class ObjectOutputStream

– Instantiate an object from class StringBuilder

– Get input from method showInputDialog() for three fields

•productID—an int

• item—a String

•price—a double

– Write the input fields to the StringBuilder object with labels (see example above)

– Write the StringBuilder object to the output file

BinaryMiniQuiz2.java (Page 1)

BinaryMiniQuiz2.java (Page 2)

Mini-Quiz No. 2 (Page 2)

Open the BlueJ project “binary-miniquizzes” and create a class named
“BinaryMiniQuiz2” (con):

– Create a static void method input() and instantiate an object variable input from
class ObjectInputStream

– Read the StringBuilder object and display all the data in a showMessageDialog()

BinaryMiniQuiz2.java (Page 3)

The Serializable Interface (Page 1)

Objects that can be written to the output stream are said to serializable

– Classes from which such objects are instantiated implement the Serializable
interface

To store an object, the JVM must store:

– The class name and its signature

– All current property (data field) values of the class and its superclasses

This process, called object serialization, is implemented in ObjectDataStream objects

Java API “StringBuilder”

The Serializable Interface (Page 2)

Format:

public class ClassName [extends ClassName] implements Serializable

{ …

Example:

public class Student extends Object implements Serializable

{ …

BinaryMiniQuiz2.java (Page 1)

Serializing Arrays (Page 1)

If all elements of an array are serializable, the array is serializable

An array can be saved using writeObject() and restored using readObject()

– Recall that arrays are objects

Serializing Arrays (Page 2)

Format for readObject():

type[] arrayObject = (castType[]) objectInputStreamObject.readObject();

– Method returns an object so it must be cast to the array object type

Example:

SuffolkResident[] student = (SuffolkResident[]) input.readObject();

Serializing Arrays (Page 3)

Format for writeObject():

objectInputStreamObject.readObject(arrayObject);

Example:

SuffolkResident[] student = new SuffolkResident[3];

…

output.writeObject(student);

Random Access Files (Page 1)

Refers to ability to access records from a data file at random

– The opposite of random access is sequential access in which data must be accessed
by passing through all intervening points

Enables reading or writing information from or to any point in the file

– In a sequential-access file, must be accessed starting from the beginning of the file

Random Access Files

Random Access Files (Page 2)

Disks are random access media

– Tapes are sequential access media

Sometimes also called direct access

The RandomAccessFile Class (Page 1)

Objects instantiated from this class have the ability to read and write randomly

Similar to FileWriter and FileReader in that a file can be specified on the system to
open when it is created it

– Use either “path/filename” string or File object

The RandomAccessFile Class (Page 2)

When opening a RandomAccessFile, indicate whether file just will be read from (“r”) or
also written to (“rw”)

– Must be able to read a file in order to write it

Located in the java.io package

import java.io.RandomAccessFile;

The RandomAccessFile Class (Page 3)

Format:

RandomAccessFile randomAccessObject = new RandomAccessFile("path/filename" |
fileObject, "r"/"rw");

– The strings “r” or “rw” are the access methods

Example:

RandomAccessFile studentFile = new RandomAccessFile("e:/studentFile.dat", "rw");

Random Access File Processing (Page 1)

After a random file is open, common read and write methods are defined in the
DataInput and DataOutput interfaces to perform I/O

– Class RandomAccessFile implements both DataInput and DataOutput

Random Access File Processing (Page 2)

For example:

– The writeInt() writes four bytes of numeric integer data to the file

– The readInt() reads four bytes of numeric integer data from the file

There are write and read methods for every primitive data type

The File Pointer

RandomAccessFile supports the notion of a file pointer:

– Indicates the current location in the file

– When the file is first created or opened, the file pointer is set to zero (0), indicating
the beginning of the file

– Calls to read and write methods advances the file pointer by the number of bytes
read or written

FilesStreams8.java (Page 1)

FilesStreams8.java (Page 2)

The seek() Method (Page 1)

A method of the RandomAccessFile class that sets moves the file-pointer position

– Measured in bytes from the beginning of file

– The location at which the next read or write operation will begin

The offset position often is calculated based upon which record is to be accessed next

The seek() Method (Page 2)

Format:

randomAccessObject.seek(long);

– long is a long integer value or variable, or an arithmetic expression that evaluates to
a long

Examples:

studentFile.seek(4);

studentFile.seek(4 * (courseNumber - 1));

The Data

The Index

FilesStreams9.java (Page 1)

FilesStreams9.java (Page 2)

FilesStreams9.java (Page 3)

FilesStreams10.java (Page 1)

FilesStreams10.java (Page 2)

FilesStreams10.java (Page 3)

The Data

Record Size

The Index

The length() Method for a RandomAccessFile Object

For a RandomAccessFile object, returns the length of the file measured in bytes

Format:

randomAccessFileName.length();

Example:

studentFile.seek(studentFile.length());

FilesStreams11.java (Page 1)

FilesStreams11.java (Page 2)

FilesStreams11.java (Page 3)

FilesStreams12.java (Page 1)

FilesStreams12.java (Page 2)

FilesStreams12.java (Page 3)

The readChar() Method for a RandomAccessFile Object

Reads a single character from an object instantiated from class RandomAccessFile

Format:

randomAccessFileObject.readChar();

Example:

chars[ctr] = inFile.readChar();

The getChars() Method for a String Object (Page 1)

Copies characters from String into a destination char array

Format:

stringObject.getChars(srcBegin, srcEnd, dest, destBegin);

– srcBegin—index of the first character to copy

– srcEnd—index after the last character to copy

– dest—the destination char array

– destBegin—start offset in destination char array

The getChars() Method for a String Object (Page 2)

Format:

stringObject.getChars(srcBegin, srcEnd, dest, destBegin);

Example:

outString.getChars(0, length, chars, 0);

– The variable chars is a char array

The writeChars() Method for a RandomAccessFile Object (Page 1)

Writes a String to as RandomAccessFile as a sequence of characters …

– Each character is written separately to the data output stream as though were being
written by the writeChar() method contained within a loop

The write operation starts at the current position of the file pointer

The writeChars() Method for a RandomAccessFile Object (Page 2)

Format:

randomAccessFileName.writeChars(String);

Example:

outFile.writeChars(new String(chars));

– The variable chars is a char array and String is a call to String constructor that takes
a char array

The DataInput and DataOutput Interfaces (Page 1)

DataInput—an interface that implements the reading bytes from a binary stream

– The bytes may be reconstructed into any of the Java primitive types

DataOutput—an interface that implements the writing bytes to a binary stream

– Data converted from any of the Java primitive types back to a series of bytes

The DataInput and DataOutput Interfaces (Page 2)

The RandomAccessFile class implements both the DataInput and DataOutput
interfaces

– Therefore a RandomAccessFile object “is a” DataInput object and “is a” DataOutput
object

Subtyping allows RandomAccessFile objects to be “assigned” to a DataInput or
DataOutput object

Found in the java.io package

import java.io.DataInput;

import java.io.DataOutput;

The DataInput and DataOutput Interfaces (Page 3)

Examples:

DataOutput courseFile = new RandomAccessFile("courseFile.dat", "rw")

– Subtyping when instantiating a RandomAccessFile object variable

public static String readFixedLengthString(int size, DataInput inFile)

– Subtyping when passing a RandomAccessFile object to a parameter variable

FixedLengthStringIO.java (Page 1)

FixedLengthStringIO.java (Page 2)

FixedLengthStringIO.java (Page 3)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

CST141—Binary I/O Page 7

Binary I/O

CST141

Binary Data

All data is stored in computers in binary format

– All ones (1) and zeros (0)

Text (including digits) is converted to some coding scheme (ASCII, Unicode, etc.)

Binary does not require conversions—the binary numeric value is written directly to the
file

InputStream and OutputStream

These are the abstract classes from which all binary input and output classes extend

An especially good example of inheritance from the Java API

All methods from all subclasses throw the checked IOException (or one of its
subclasses) which must be caught

– Must be imported from java.io

The Binary I/O Classes

The FileInputStream Class (Page 1)

Used for creating input streams that read only positive byte numeric data from a file

A subclass of InputStream

– Inherits the read() method that reads one byte of data to the stream

Located in the java.io package

import java.io.FileInputStream;

The FileInputStream Class (Page 2)

Format:

FileInputStream fileInputStreamObject = new FileInputStream("path/filename");

Throws a java.io.FileNotFoundException if the file does not exist

Throws a java.io.DirectoryNotFoundException if the folder on the drivedoes not exist

Examples:

FileInputStream input = new FileInputStream("temp.dat");

The FileOutputStream Class (Page 1)

Used for creating output stream objects that write only positive byte numeric data to a
file

A subclass of OutputStream

– Inherits the write() method that writes one byte of data to the stream

Located in the java.io package

import java.io.FileOutputStream;

The FileOutputStream Class (Page 2)

Format:

FileOutputStream fileOutputStreamObject = new FileOutputStream("path/filename");

Examples:

FileOutputStream input = new FileOutputStream("temp.dat");

The read() Method

A method of class FileInputStream (inherited from FileStream) that reads the next byte
of data from the input stream—from the file)

Format:

fileInputStreamObject.read();

Example:

byte credits = input.read();

The write() Method

A method of class FileInputStream (inherited from FileStream) that writes a specified
byte of data to the output stream—to the file)

Format:

fileOutputStreamObject.write(byteValue);

Example:

output.write(credits);

FileIO.java (Page 1)

FileIO.java (Page 2)

FileIO.java (Page 3)

FileIO.java (Page 4)

FileIO.java (Page 5)

FileIO.java (Page 6)

Filter Streams

The FilterInputStream and FilterOutputStream classes filter streams filter bytes for
some purpose

Subclasses of these two classes read and write integers, floats, strings, characters and
booleans

The DataInputStream Class (Page 1)

“Wraps” around a FileInputStream object to give it the ability to read integers, floats,
strings, booleans and characters

A subclass of FilterInputStream

Located in the java.io package

import java.io.DataInputStream;

The DataInputStream Class (Page 2)

Format:

DataInputStream dataInputStreamObject = new
DataInputStream(fileInputStreamObject);

Example:

DataInputStream input = new DataInputStream(new FileInputStream("temp.dat"));

The DataOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to give it the ability to write integers,
floats, strings, booleans and characters

A subclass of FilterOutputStream

Located in the java.io package

import java.io.DataOutputStream;

The DataOutputStream Class (Page 2)

Format:

DataOutputStream dataInputStreamObject = new
DataOutputStream(fileOutputStreamObject);

Example:

DataOutputStream input = new DataOutputStream(new FileOutputStream(
"temp.dat"));

Primitive Read Methods for Class DataInputStream (Page 1)

Reads primitives including integers, floats, booleans and characters from the input
stream—from a file):

– readByte()

– readChar()

– readFloat()

– readDouble()

– readInt()

– readLong()

– readShort()

– readBoolean()

Primitive Read Methods for Class DataInputStream (Page 2)

Format:

dataInputStreamObject.readPrimitive();

Example:

int credits = input.readInt();

The readUTF() Method

A method of class DataInputStream that reads a series of bytes from the input stream
that are in UTF-8 format and converts them into a string

Format:

dataInputStreamObject.readUTF();

Example:

String firstName = input.readUTF();

Primitive Write Methods for Class DataOutputStream (Page 1)

Writes primitives including integers, floats, booleans and characters to the output
stream—to a file):

– writeByte()

– writeChar()

– writeFloat()

– writeDouble()

– writeInt()

– writeLong()

– writeShort()

– writeBoolean()

Primitive Write Methods for Class DataOutputStream (Page 2)

Format:

dataOutputStreamObject.writePrimitive();

Example:

output.writeInt(credits);

The writeUTF() Method

A method of class DataInputString that converts a series of bytes into a string (UTF-8
format) and writes them into the output stream

Format:

dataInputStreamObject.readUTF();

Example:

ouput.readUTF(firstName);

DataIOStream.java (Page 1)

DataIOStream.java (Page 2)

DataIOStream.java (Page 3)

DataIOStream.java (Page 4)

DataIOStream.java (Page 5)

DataIOStream.java (Page 6)

Mini-Quiz No. 1 (Page 1)

Create a new BlueJ project named “binary-miniquizzes” and create a class named
“BinaryMiniQuiz1”

– Create a static void method output() and instantiate object variable output from
class DataOutputStream

– Use a for loop to iterate three times and get input from method showInputDialog()
for three fields

•productID—an int

• item—a String

•price—a double

– Write the three fields to the output object

BinaryMiniQuiz1.java (Page 1)

BinaryMiniQuiz1.java (Page 2)

Mini-Quiz No. 1 (Page 2)

Create a new BlueJ project named “binary-miniquizzes” and create a class named
“BinaryMiniQuiz1” (con):

– Create a static void method input() and instantiate an object variable input from
class DataInputStream

– Use a for loop to iterate through and read the three fields for all records from the
input object into a StringBuilder object with appropriate labels (see example above)

– Display all the data in a showMessageDialog()

BinaryMiniQuiz1.java (Page 3)

The BufferedInputStream Class (Page 1)

“Wraps” around a FileInputStream object to speed up input by reducing the number of
disk reads

The whole block of data is read into the RAM buffer at once

The BufferedInputStream Class (Page 2)

A subclass of FilterInputStream

It has no methods of its own—all are inherited from InputStream

Located in the java.io package

import java.io.BufferedInputStream;

The BufferedInputStream Class (Page 3)

Format:

BufferedInputStream bufferedInputStreamObject = new BufferedInputStream(
fileInputStreamObject);

Example:

BufferedInputStream input = new BufferedInputStream(new FileInputStream(
"temp.dat"));

The BufferedInputStream Class (Page 4)

A DataInputStream can be “wrapped” around the BufferedInputStream to provide
functionality for reading primitives and strings:

DataInputStream dataInputStreamObject = new DataOutputStream(new
BufferedInputStream(fileInputStreamObject));

Example:

DataInputStream input = new DataInputStream(new BufferedInputStream(new
FileInputStream("temp.dat")));

The BufferedOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to speed up output by reducing the number
of disk writes

The whole block of data first is written into the RAM buffer; when the buffer is full, the
block is written to disk

The BufferedOutputStream Class (Page 2)

A subclass of FilterOutputStream

It has no methods of its own—all are inherited from OutputStream

Located in the java.io package

import java.io.BufferedOutputStream;

The BufferedOutputStream Class (Page 3)

Format:

BufferedOutputStream bufferedOutputStreamObject = new BufferedOutputStream(
fileOutputStreamObject);

Example:

BufferedOutputStream output = new BufferedOutputStream(new FileOutputStream(
"temp.dat"));

The BufferedOutputStream Class (Page 4)

A DataOutputStream can be “wrapped” around the BufferedOutputStream to provide
functionality to write primitives and strings:

DataOutputStream dataOutputStreamObject = new DataOutputStream(new
BufferedOutputStream(fileOutputStreamObject));

Example:

DataOutputStream input = new DataOutputStream(new BufferedOutputStream(new
FileOutputStream("temp.dat")));

BufferedIOStream.java (Page 1)

BufferedIOStream.java (Page 2)

BufferedIOStream.java (Page 3)

BufferedIOStream.java (Page 4)

BufferedIOStream.java (Page 5)

BufferedIOStream.java (Page 6)

The ObjectInputStream Class (Page 1)

“Wraps” around a FileInputStream object to give it the ability to read “serializable”
objects from the input stream

Reads primitives and strings as well (contains all the methods of class
DataInputStream)

Located in the java.io package

import java.io.ObjectInputStream;

The ObjectInputStream Class (Page 2)

Format:

ObjectInputStream objectInputStreamObject = new ObjectInputStream(
fileInputStreamObject);

Example:

ObjectInputStream input = new ObjectInputStream(new FileInputStream(
"temp.dat"));

The ObjectOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to give it the ability to write “serializable”
objects to the output stream

Writes primitives and strings as well (contains all the methods of class
DataOutputStream)

Located in the java.io package

import java.io.ObjectOutputStream;

The ObjectOutputStream Class (Page 2)

Format:

ObjectOutputStream objectOutputStreamObject = new ObjectOutputStream(
fileOutputStreamObject);

Example:

ObjectOutputStream input = new ObjectOutputStream(new FileOutputStream(
"temp.dat"));

The readObject() Method

A method of class ObjectInputStream that reads a “serializable” object from the input
stream

May throw a ClassNotFoundException because when the JVM restores the object, it
must first load the class into RAM

Format:

objectInputStreamObject.readObject ();

Example:

SuffolkResident student = input.readObject();

The writeObject() Method

A method of class ObjectInputString that writes a “serializable” object into the output
stream

Format:

objectOutputStreamObject.writeObject(object);

Example:

output.writeObject(new SuffolkResident());

ObjectIOStream.java (Page 1)

ObjectIOStream.java (Page 2)

ObjectIOStream.java (Page 3)

ObjectIOStream.java (Page 4)

ObjectIOStream.java (Page 5)

ObjectIOStream.java (Page 6)

Mini-Quiz No. 2 (Page 1)

Open the BlueJ project “binary-miniquizzes” and create a class named
“BinaryMiniQuiz2”:

– Create a static void method output() and instantiate object variable output from
class ObjectOutputStream

– Instantiate an object from class StringBuilder

– Get input from method showInputDialog() for three fields

•productID—an int

• item—a String

•price—a double

– Write the input fields to the StringBuilder object with labels (see example above)

– Write the StringBuilder object to the output file

BinaryMiniQuiz2.java (Page 1)

BinaryMiniQuiz2.java (Page 2)

Mini-Quiz No. 2 (Page 2)

Open the BlueJ project “binary-miniquizzes” and create a class named
“BinaryMiniQuiz2” (con):

– Create a static void method input() and instantiate an object variable input from
class ObjectInputStream

– Read the StringBuilder object and display all the data in a showMessageDialog()

BinaryMiniQuiz2.java (Page 3)

The Serializable Interface (Page 1)

Objects that can be written to the output stream are said to serializable

– Classes from which such objects are instantiated implement the Serializable
interface

To store an object, the JVM must store:

– The class name and its signature

– All current property (data field) values of the class and its superclasses

This process, called object serialization, is implemented in ObjectDataStream objects

Java API “StringBuilder”

The Serializable Interface (Page 2)

Format:

public class ClassName [extends ClassName] implements Serializable

{ …

Example:

public class Student extends Object implements Serializable

{ …

BinaryMiniQuiz2.java (Page 1)

Serializing Arrays (Page 1)

If all elements of an array are serializable, the array is serializable

An array can be saved using writeObject() and restored using readObject()

– Recall that arrays are objects

Serializing Arrays (Page 2)

Format for readObject():

type[] arrayObject = (castType[]) objectInputStreamObject.readObject();

– Method returns an object so it must be cast to the array object type

Example:

SuffolkResident[] student = (SuffolkResident[]) input.readObject();

Serializing Arrays (Page 3)

Format for writeObject():

objectInputStreamObject.readObject(arrayObject);

Example:

SuffolkResident[] student = new SuffolkResident[3];

…

output.writeObject(student);

Random Access Files (Page 1)

Refers to ability to access records from a data file at random

– The opposite of random access is sequential access in which data must be accessed
by passing through all intervening points

Enables reading or writing information from or to any point in the file

– In a sequential-access file, must be accessed starting from the beginning of the file

Random Access Files

Random Access Files (Page 2)

Disks are random access media

– Tapes are sequential access media

Sometimes also called direct access

The RandomAccessFile Class (Page 1)

Objects instantiated from this class have the ability to read and write randomly

Similar to FileWriter and FileReader in that a file can be specified on the system to
open when it is created it

– Use either “path/filename” string or File object

The RandomAccessFile Class (Page 2)

When opening a RandomAccessFile, indicate whether file just will be read from (“r”) or
also written to (“rw”)

– Must be able to read a file in order to write it

Located in the java.io package

import java.io.RandomAccessFile;

The RandomAccessFile Class (Page 3)

Format:

RandomAccessFile randomAccessObject = new RandomAccessFile("path/filename" |
fileObject, "r"/"rw");

– The strings “r” or “rw” are the access methods

Example:

RandomAccessFile studentFile = new RandomAccessFile("e:/studentFile.dat", "rw");

Random Access File Processing (Page 1)

After a random file is open, common read and write methods are defined in the
DataInput and DataOutput interfaces to perform I/O

– Class RandomAccessFile implements both DataInput and DataOutput

Random Access File Processing (Page 2)

For example:

– The writeInt() writes four bytes of numeric integer data to the file

– The readInt() reads four bytes of numeric integer data from the file

There are write and read methods for every primitive data type

The File Pointer

RandomAccessFile supports the notion of a file pointer:

– Indicates the current location in the file

– When the file is first created or opened, the file pointer is set to zero (0), indicating
the beginning of the file

– Calls to read and write methods advances the file pointer by the number of bytes
read or written

FilesStreams8.java (Page 1)

FilesStreams8.java (Page 2)

The seek() Method (Page 1)

A method of the RandomAccessFile class that sets moves the file-pointer position

– Measured in bytes from the beginning of file

– The location at which the next read or write operation will begin

The offset position often is calculated based upon which record is to be accessed next

The seek() Method (Page 2)

Format:

randomAccessObject.seek(long);

– long is a long integer value or variable, or an arithmetic expression that evaluates to
a long

Examples:

studentFile.seek(4);

studentFile.seek(4 * (courseNumber - 1));

The Data

The Index

FilesStreams9.java (Page 1)

FilesStreams9.java (Page 2)

FilesStreams9.java (Page 3)

FilesStreams10.java (Page 1)

FilesStreams10.java (Page 2)

FilesStreams10.java (Page 3)

The Data

Record Size

The Index

The length() Method for a RandomAccessFile Object

For a RandomAccessFile object, returns the length of the file measured in bytes

Format:

randomAccessFileName.length();

Example:

studentFile.seek(studentFile.length());

FilesStreams11.java (Page 1)

FilesStreams11.java (Page 2)

FilesStreams11.java (Page 3)

FilesStreams12.java (Page 1)

FilesStreams12.java (Page 2)

FilesStreams12.java (Page 3)

The readChar() Method for a RandomAccessFile Object

Reads a single character from an object instantiated from class RandomAccessFile

Format:

randomAccessFileObject.readChar();

Example:

chars[ctr] = inFile.readChar();

The getChars() Method for a String Object (Page 1)

Copies characters from String into a destination char array

Format:

stringObject.getChars(srcBegin, srcEnd, dest, destBegin);

– srcBegin—index of the first character to copy

– srcEnd—index after the last character to copy

– dest—the destination char array

– destBegin—start offset in destination char array

The getChars() Method for a String Object (Page 2)

Format:

stringObject.getChars(srcBegin, srcEnd, dest, destBegin);

Example:

outString.getChars(0, length, chars, 0);

– The variable chars is a char array

The writeChars() Method for a RandomAccessFile Object (Page 1)

Writes a String to as RandomAccessFile as a sequence of characters …

– Each character is written separately to the data output stream as though were being
written by the writeChar() method contained within a loop

The write operation starts at the current position of the file pointer

The writeChars() Method for a RandomAccessFile Object (Page 2)

Format:

randomAccessFileName.writeChars(String);

Example:

outFile.writeChars(new String(chars));

– The variable chars is a char array and String is a call to String constructor that takes
a char array

The DataInput and DataOutput Interfaces (Page 1)

DataInput—an interface that implements the reading bytes from a binary stream

– The bytes may be reconstructed into any of the Java primitive types

DataOutput—an interface that implements the writing bytes to a binary stream

– Data converted from any of the Java primitive types back to a series of bytes

The DataInput and DataOutput Interfaces (Page 2)

The RandomAccessFile class implements both the DataInput and DataOutput
interfaces

– Therefore a RandomAccessFile object “is a” DataInput object and “is a” DataOutput
object

Subtyping allows RandomAccessFile objects to be “assigned” to a DataInput or
DataOutput object

Found in the java.io package

import java.io.DataInput;

import java.io.DataOutput;

The DataInput and DataOutput Interfaces (Page 3)

Examples:

DataOutput courseFile = new RandomAccessFile("courseFile.dat", "rw")

– Subtyping when instantiating a RandomAccessFile object variable

public static String readFixedLengthString(int size, DataInput inFile)

– Subtyping when passing a RandomAccessFile object to a parameter variable

FixedLengthStringIO.java (Page 1)

FixedLengthStringIO.java (Page 2)

FixedLengthStringIO.java (Page 3)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

Binary I/O

CST141

Binary Data

All data is stored in computers in binary format

– All ones (1) and zeros (0)

Text (including digits) is converted to some coding scheme (ASCII, Unicode, etc.)

Binary does not require conversions—the binary numeric value is written directly to the
file

InputStream and OutputStream

These are the abstract classes from which all binary input and output classes extend

An especially good example of inheritance from the Java API

All methods from all subclasses throw the checked IOException (or one of its
subclasses) which must be caught

– Must be imported from java.io

The Binary I/O Classes

The FileInputStream Class (Page 1)

Used for creating input streams that read only positive byte numeric data from a file

A subclass of InputStream

– Inherits the read() method that reads one byte of data to the stream

Located in the java.io package

import java.io.FileInputStream;

The FileInputStream Class (Page 2)

Format:

FileInputStream fileInputStreamObject = new FileInputStream("path/filename");

Throws a java.io.FileNotFoundException if the file does not exist

Throws a java.io.DirectoryNotFoundException if the folder on the drivedoes not exist

Examples:

FileInputStream input = new FileInputStream("temp.dat");

The FileOutputStream Class (Page 1)

Used for creating output stream objects that write only positive byte numeric data to a
file

A subclass of OutputStream

– Inherits the write() method that writes one byte of data to the stream

Located in the java.io package

import java.io.FileOutputStream;

The FileOutputStream Class (Page 2)

Format:

FileOutputStream fileOutputStreamObject = new FileOutputStream("path/filename");

Examples:

FileOutputStream input = new FileOutputStream("temp.dat");

The read() Method

A method of class FileInputStream (inherited from FileStream) that reads the next byte
of data from the input stream—from the file)

Format:

fileInputStreamObject.read();

Example:

byte credits = input.read();

The write() Method

A method of class FileInputStream (inherited from FileStream) that writes a specified
byte of data to the output stream—to the file)

Format:

fileOutputStreamObject.write(byteValue);

Example:

output.write(credits);

FileIO.java (Page 1)

FileIO.java (Page 2)

FileIO.java (Page 3)

FileIO.java (Page 4)

FileIO.java (Page 5)

FileIO.java (Page 6)

Filter Streams

The FilterInputStream and FilterOutputStream classes filter streams filter bytes for
some purpose

Subclasses of these two classes read and write integers, floats, strings, characters and
booleans

The DataInputStream Class (Page 1)

“Wraps” around a FileInputStream object to give it the ability to read integers, floats,
strings, booleans and characters

A subclass of FilterInputStream

Located in the java.io package

import java.io.DataInputStream;

The DataInputStream Class (Page 2)

Format:

DataInputStream dataInputStreamObject = new
DataInputStream(fileInputStreamObject);

Example:

DataInputStream input = new DataInputStream(new FileInputStream("temp.dat"));

The DataOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to give it the ability to write integers,
floats, strings, booleans and characters

A subclass of FilterOutputStream

Located in the java.io package

import java.io.DataOutputStream;

The DataOutputStream Class (Page 2)

Format:

DataOutputStream dataInputStreamObject = new
DataOutputStream(fileOutputStreamObject);

Example:

DataOutputStream input = new DataOutputStream(new FileOutputStream(
"temp.dat"));

Primitive Read Methods for Class DataInputStream (Page 1)

Reads primitives including integers, floats, booleans and characters from the input
stream—from a file):

– readByte()

– readChar()

– readFloat()

– readDouble()

– readInt()

– readLong()

– readShort()

– readBoolean()

Primitive Read Methods for Class DataInputStream (Page 2)

Format:

dataInputStreamObject.readPrimitive();

Example:

int credits = input.readInt();

The readUTF() Method

A method of class DataInputStream that reads a series of bytes from the input stream
that are in UTF-8 format and converts them into a string

Format:

dataInputStreamObject.readUTF();

Example:

String firstName = input.readUTF();

Primitive Write Methods for Class DataOutputStream (Page 1)

Writes primitives including integers, floats, booleans and characters to the output
stream—to a file):

– writeByte()

– writeChar()

– writeFloat()

– writeDouble()

– writeInt()

– writeLong()

– writeShort()

– writeBoolean()

Primitive Write Methods for Class DataOutputStream (Page 2)

Format:

dataOutputStreamObject.writePrimitive();

Example:

output.writeInt(credits);

The writeUTF() Method

A method of class DataInputString that converts a series of bytes into a string (UTF-8
format) and writes them into the output stream

Format:

dataInputStreamObject.readUTF();

Example:

ouput.readUTF(firstName);

DataIOStream.java (Page 1)

DataIOStream.java (Page 2)

DataIOStream.java (Page 3)

DataIOStream.java (Page 4)

DataIOStream.java (Page 5)

DataIOStream.java (Page 6)

Mini-Quiz No. 1 (Page 1)

Create a new BlueJ project named “binary-miniquizzes” and create a class named
“BinaryMiniQuiz1”

– Create a static void method output() and instantiate object variable output from
class DataOutputStream

– Use a for loop to iterate three times and get input from method showInputDialog()
for three fields

•productID—an int

• item—a String

•price—a double

– Write the three fields to the output object

BinaryMiniQuiz1.java (Page 1)

BinaryMiniQuiz1.java (Page 2)

Mini-Quiz No. 1 (Page 2)

Create a new BlueJ project named “binary-miniquizzes” and create a class named
“BinaryMiniQuiz1” (con):

– Create a static void method input() and instantiate an object variable input from
class DataInputStream

– Use a for loop to iterate through and read the three fields for all records from the
input object into a StringBuilder object with appropriate labels (see example above)

– Display all the data in a showMessageDialog()

BinaryMiniQuiz1.java (Page 3)

The BufferedInputStream Class (Page 1)

“Wraps” around a FileInputStream object to speed up input by reducing the number of
disk reads

The whole block of data is read into the RAM buffer at once

The BufferedInputStream Class (Page 2)

A subclass of FilterInputStream

It has no methods of its own—all are inherited from InputStream

Located in the java.io package

import java.io.BufferedInputStream;

The BufferedInputStream Class (Page 3)

Format:

BufferedInputStream bufferedInputStreamObject = new BufferedInputStream(
fileInputStreamObject);

Example:

BufferedInputStream input = new BufferedInputStream(new FileInputStream(
"temp.dat"));

The BufferedInputStream Class (Page 4)

A DataInputStream can be “wrapped” around the BufferedInputStream to provide
functionality for reading primitives and strings:

DataInputStream dataInputStreamObject = new DataOutputStream(new
BufferedInputStream(fileInputStreamObject));

Example:

DataInputStream input = new DataInputStream(new BufferedInputStream(new
FileInputStream("temp.dat")));

The BufferedOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to speed up output by reducing the number
of disk writes

The whole block of data first is written into the RAM buffer; when the buffer is full, the
block is written to disk

The BufferedOutputStream Class (Page 2)

A subclass of FilterOutputStream

It has no methods of its own—all are inherited from OutputStream

Located in the java.io package

import java.io.BufferedOutputStream;

The BufferedOutputStream Class (Page 3)

Format:

BufferedOutputStream bufferedOutputStreamObject = new BufferedOutputStream(
fileOutputStreamObject);

Example:

BufferedOutputStream output = new BufferedOutputStream(new FileOutputStream(
"temp.dat"));

The BufferedOutputStream Class (Page 4)

A DataOutputStream can be “wrapped” around the BufferedOutputStream to provide
functionality to write primitives and strings:

DataOutputStream dataOutputStreamObject = new DataOutputStream(new
BufferedOutputStream(fileOutputStreamObject));

Example:

DataOutputStream input = new DataOutputStream(new BufferedOutputStream(new
FileOutputStream("temp.dat")));

BufferedIOStream.java (Page 1)

BufferedIOStream.java (Page 2)

BufferedIOStream.java (Page 3)

BufferedIOStream.java (Page 4)

BufferedIOStream.java (Page 5)

BufferedIOStream.java (Page 6)

The ObjectInputStream Class (Page 1)

“Wraps” around a FileInputStream object to give it the ability to read “serializable”
objects from the input stream

Reads primitives and strings as well (contains all the methods of class
DataInputStream)

Located in the java.io package

import java.io.ObjectInputStream;

The ObjectInputStream Class (Page 2)

Format:

ObjectInputStream objectInputStreamObject = new ObjectInputStream(
fileInputStreamObject);

Example:

ObjectInputStream input = new ObjectInputStream(new FileInputStream(
"temp.dat"));

The ObjectOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to give it the ability to write “serializable”
objects to the output stream

Writes primitives and strings as well (contains all the methods of class
DataOutputStream)

Located in the java.io package

import java.io.ObjectOutputStream;

The ObjectOutputStream Class (Page 2)

Format:

ObjectOutputStream objectOutputStreamObject = new ObjectOutputStream(
fileOutputStreamObject);

Example:

ObjectOutputStream input = new ObjectOutputStream(new FileOutputStream(
"temp.dat"));

The readObject() Method

A method of class ObjectInputStream that reads a “serializable” object from the input
stream

May throw a ClassNotFoundException because when the JVM restores the object, it
must first load the class into RAM

Format:

objectInputStreamObject.readObject ();

Example:

SuffolkResident student = input.readObject();

The writeObject() Method

A method of class ObjectInputString that writes a “serializable” object into the output
stream

Format:

objectOutputStreamObject.writeObject(object);

Example:

output.writeObject(new SuffolkResident());

ObjectIOStream.java (Page 1)

ObjectIOStream.java (Page 2)

ObjectIOStream.java (Page 3)

ObjectIOStream.java (Page 4)

ObjectIOStream.java (Page 5)

ObjectIOStream.java (Page 6)

Mini-Quiz No. 2 (Page 1)

Open the BlueJ project “binary-miniquizzes” and create a class named
“BinaryMiniQuiz2”:

– Create a static void method output() and instantiate object variable output from
class ObjectOutputStream

– Instantiate an object from class StringBuilder

– Get input from method showInputDialog() for three fields

•productID—an int

• item—a String

•price—a double

– Write the input fields to the StringBuilder object with labels (see example above)

– Write the StringBuilder object to the output file

BinaryMiniQuiz2.java (Page 1)

BinaryMiniQuiz2.java (Page 2)

Mini-Quiz No. 2 (Page 2)

Open the BlueJ project “binary-miniquizzes” and create a class named
“BinaryMiniQuiz2” (con):

– Create a static void method input() and instantiate an object variable input from
class ObjectInputStream

– Read the StringBuilder object and display all the data in a showMessageDialog()

BinaryMiniQuiz2.java (Page 3)

The Serializable Interface (Page 1)

Objects that can be written to the output stream are said to serializable

– Classes from which such objects are instantiated implement the Serializable
interface

To store an object, the JVM must store:

– The class name and its signature

– All current property (data field) values of the class and its superclasses

This process, called object serialization, is implemented in ObjectDataStream objects

Java API “StringBuilder”

The Serializable Interface (Page 2)

Format:

public class ClassName [extends ClassName] implements Serializable

{ …

Example:

public class Student extends Object implements Serializable

{ …

BinaryMiniQuiz2.java (Page 1)

Serializing Arrays (Page 1)

If all elements of an array are serializable, the array is serializable

An array can be saved using writeObject() and restored using readObject()

– Recall that arrays are objects

Serializing Arrays (Page 2)

Format for readObject():

type[] arrayObject = (castType[]) objectInputStreamObject.readObject();

– Method returns an object so it must be cast to the array object type

Example:

SuffolkResident[] student = (SuffolkResident[]) input.readObject();

Serializing Arrays (Page 3)

Format for writeObject():

objectInputStreamObject.readObject(arrayObject);

Example:

SuffolkResident[] student = new SuffolkResident[3];

…

output.writeObject(student);

Random Access Files (Page 1)

Refers to ability to access records from a data file at random

– The opposite of random access is sequential access in which data must be accessed
by passing through all intervening points

Enables reading or writing information from or to any point in the file

– In a sequential-access file, must be accessed starting from the beginning of the file

Random Access Files

Random Access Files (Page 2)

Disks are random access media

– Tapes are sequential access media

Sometimes also called direct access

The RandomAccessFile Class (Page 1)

Objects instantiated from this class have the ability to read and write randomly

Similar to FileWriter and FileReader in that a file can be specified on the system to
open when it is created it

– Use either “path/filename” string or File object

The RandomAccessFile Class (Page 2)

When opening a RandomAccessFile, indicate whether file just will be read from (“r”) or
also written to (“rw”)

– Must be able to read a file in order to write it

Located in the java.io package

import java.io.RandomAccessFile;

The RandomAccessFile Class (Page 3)

Format:

RandomAccessFile randomAccessObject = new RandomAccessFile("path/filename" |
fileObject, "r"/"rw");

– The strings “r” or “rw” are the access methods

Example:

RandomAccessFile studentFile = new RandomAccessFile("e:/studentFile.dat", "rw");

Random Access File Processing (Page 1)

After a random file is open, common read and write methods are defined in the
DataInput and DataOutput interfaces to perform I/O

– Class RandomAccessFile implements both DataInput and DataOutput

Random Access File Processing (Page 2)

For example:

– The writeInt() writes four bytes of numeric integer data to the file

– The readInt() reads four bytes of numeric integer data from the file

There are write and read methods for every primitive data type

The File Pointer

RandomAccessFile supports the notion of a file pointer:

– Indicates the current location in the file

– When the file is first created or opened, the file pointer is set to zero (0), indicating
the beginning of the file

– Calls to read and write methods advances the file pointer by the number of bytes
read or written

FilesStreams8.java (Page 1)

FilesStreams8.java (Page 2)

The seek() Method (Page 1)

A method of the RandomAccessFile class that sets moves the file-pointer position

– Measured in bytes from the beginning of file

– The location at which the next read or write operation will begin

The offset position often is calculated based upon which record is to be accessed next

The seek() Method (Page 2)

Format:

randomAccessObject.seek(long);

– long is a long integer value or variable, or an arithmetic expression that evaluates to
a long

Examples:

studentFile.seek(4);

studentFile.seek(4 * (courseNumber - 1));

The Data

The Index

FilesStreams9.java (Page 1)

FilesStreams9.java (Page 2)

FilesStreams9.java (Page 3)

FilesStreams10.java (Page 1)

FilesStreams10.java (Page 2)

FilesStreams10.java (Page 3)

The Data

Record Size

The Index

The length() Method for a RandomAccessFile Object

For a RandomAccessFile object, returns the length of the file measured in bytes

Format:

randomAccessFileName.length();

Example:

studentFile.seek(studentFile.length());

FilesStreams11.java (Page 1)

FilesStreams11.java (Page 2)

FilesStreams11.java (Page 3)

FilesStreams12.java (Page 1)

FilesStreams12.java (Page 2)

FilesStreams12.java (Page 3)

The readChar() Method for a RandomAccessFile Object

Reads a single character from an object instantiated from class RandomAccessFile

Format:

randomAccessFileObject.readChar();

Example:

chars[ctr] = inFile.readChar();

The getChars() Method for a String Object (Page 1)

Copies characters from String into a destination char array

Format:

stringObject.getChars(srcBegin, srcEnd, dest, destBegin);

– srcBegin—index of the first character to copy

– srcEnd—index after the last character to copy

– dest—the destination char array

– destBegin—start offset in destination char array

The getChars() Method for a String Object (Page 2)

Format:

stringObject.getChars(srcBegin, srcEnd, dest, destBegin);

Example:

outString.getChars(0, length, chars, 0);

– The variable chars is a char array

The writeChars() Method for a RandomAccessFile Object (Page 1)

Writes a String to as RandomAccessFile as a sequence of characters …

– Each character is written separately to the data output stream as though were being
written by the writeChar() method contained within a loop

The write operation starts at the current position of the file pointer

The writeChars() Method for a RandomAccessFile Object (Page 2)

Format:

randomAccessFileName.writeChars(String);

Example:

outFile.writeChars(new String(chars));

– The variable chars is a char array and String is a call to String constructor that takes
a char array

The DataInput and DataOutput Interfaces (Page 1)

DataInput—an interface that implements the reading bytes from a binary stream

– The bytes may be reconstructed into any of the Java primitive types

DataOutput—an interface that implements the writing bytes to a binary stream

– Data converted from any of the Java primitive types back to a series of bytes

The DataInput and DataOutput Interfaces (Page 2)

The RandomAccessFile class implements both the DataInput and DataOutput
interfaces

– Therefore a RandomAccessFile object “is a” DataInput object and “is a” DataOutput
object

Subtyping allows RandomAccessFile objects to be “assigned” to a DataInput or
DataOutput object

Found in the java.io package

import java.io.DataInput;

import java.io.DataOutput;

The DataInput and DataOutput Interfaces (Page 3)

Examples:

DataOutput courseFile = new RandomAccessFile("courseFile.dat", "rw")

– Subtyping when instantiating a RandomAccessFile object variable

public static String readFixedLengthString(int size, DataInput inFile)

– Subtyping when passing a RandomAccessFile object to a parameter variable

FixedLengthStringIO.java (Page 1)

FixedLengthStringIO.java (Page 2)

FixedLengthStringIO.java (Page 3)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

Binary I/O

CST141

Binary Data

All data is stored in computers in binary format

– All ones (1) and zeros (0)

Text (including digits) is converted to some coding scheme (ASCII, Unicode, etc.)

Binary does not require conversions—the binary numeric value is written directly to the
file

InputStream and OutputStream

These are the abstract classes from which all binary input and output classes extend

An especially good example of inheritance from the Java API

All methods from all subclasses throw the checked IOException (or one of its
subclasses) which must be caught

– Must be imported from java.io

The Binary I/O Classes

The FileInputStream Class (Page 1)

Used for creating input streams that read only positive byte numeric data from a file

A subclass of InputStream

– Inherits the read() method that reads one byte of data to the stream

Located in the java.io package

import java.io.FileInputStream;

The FileInputStream Class (Page 2)

Format:

FileInputStream fileInputStreamObject = new FileInputStream("path/filename");

Throws a java.io.FileNotFoundException if the file does not exist

Throws a java.io.DirectoryNotFoundException if the folder on the drivedoes not exist

Examples:

FileInputStream input = new FileInputStream("temp.dat");

The FileOutputStream Class (Page 1)

Used for creating output stream objects that write only positive byte numeric data to a
file

A subclass of OutputStream

– Inherits the write() method that writes one byte of data to the stream

Located in the java.io package

import java.io.FileOutputStream;

The FileOutputStream Class (Page 2)

Format:

FileOutputStream fileOutputStreamObject = new FileOutputStream("path/filename");

Examples:

FileOutputStream input = new FileOutputStream("temp.dat");

The read() Method

A method of class FileInputStream (inherited from FileStream) that reads the next byte
of data from the input stream—from the file)

Format:

fileInputStreamObject.read();

Example:

byte credits = input.read();

The write() Method

A method of class FileInputStream (inherited from FileStream) that writes a specified
byte of data to the output stream—to the file)

Format:

fileOutputStreamObject.write(byteValue);

Example:

output.write(credits);

FileIO.java (Page 1)

FileIO.java (Page 2)

FileIO.java (Page 3)

FileIO.java (Page 4)

FileIO.java (Page 5)

FileIO.java (Page 6)

Filter Streams

The FilterInputStream and FilterOutputStream classes filter streams filter bytes for
some purpose

Subclasses of these two classes read and write integers, floats, strings, characters and
booleans

The DataInputStream Class (Page 1)

“Wraps” around a FileInputStream object to give it the ability to read integers, floats,
strings, booleans and characters

A subclass of FilterInputStream

Located in the java.io package

import java.io.DataInputStream;

The DataInputStream Class (Page 2)

Format:

DataInputStream dataInputStreamObject = new
DataInputStream(fileInputStreamObject);

Example:

DataInputStream input = new DataInputStream(new FileInputStream("temp.dat"));

The DataOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to give it the ability to write integers,
floats, strings, booleans and characters

A subclass of FilterOutputStream

Located in the java.io package

import java.io.DataOutputStream;

The DataOutputStream Class (Page 2)

Format:

DataOutputStream dataInputStreamObject = new
DataOutputStream(fileOutputStreamObject);

Example:

DataOutputStream input = new DataOutputStream(new FileOutputStream(
"temp.dat"));

Primitive Read Methods for Class DataInputStream (Page 1)

Reads primitives including integers, floats, booleans and characters from the input
stream—from a file):

– readByte()

– readChar()

– readFloat()

– readDouble()

– readInt()

– readLong()

– readShort()

– readBoolean()

Primitive Read Methods for Class DataInputStream (Page 2)

Format:

dataInputStreamObject.readPrimitive();

Example:

int credits = input.readInt();

The readUTF() Method

A method of class DataInputStream that reads a series of bytes from the input stream
that are in UTF-8 format and converts them into a string

Format:

dataInputStreamObject.readUTF();

Example:

String firstName = input.readUTF();

Primitive Write Methods for Class DataOutputStream (Page 1)

Writes primitives including integers, floats, booleans and characters to the output
stream—to a file):

– writeByte()

– writeChar()

– writeFloat()

– writeDouble()

– writeInt()

– writeLong()

– writeShort()

– writeBoolean()

Primitive Write Methods for Class DataOutputStream (Page 2)

Format:

dataOutputStreamObject.writePrimitive();

Example:

output.writeInt(credits);

The writeUTF() Method

A method of class DataInputString that converts a series of bytes into a string (UTF-8
format) and writes them into the output stream

Format:

dataInputStreamObject.readUTF();

Example:

ouput.readUTF(firstName);

DataIOStream.java (Page 1)

DataIOStream.java (Page 2)

DataIOStream.java (Page 3)

DataIOStream.java (Page 4)

DataIOStream.java (Page 5)

DataIOStream.java (Page 6)

Mini-Quiz No. 1 (Page 1)

Create a new BlueJ project named “binary-miniquizzes” and create a class named
“BinaryMiniQuiz1”

– Create a static void method output() and instantiate object variable output from
class DataOutputStream

– Use a for loop to iterate three times and get input from method showInputDialog()
for three fields

•productID—an int

• item—a String

•price—a double

– Write the three fields to the output object

BinaryMiniQuiz1.java (Page 1)

BinaryMiniQuiz1.java (Page 2)

Mini-Quiz No. 1 (Page 2)

Create a new BlueJ project named “binary-miniquizzes” and create a class named
“BinaryMiniQuiz1” (con):

– Create a static void method input() and instantiate an object variable input from
class DataInputStream

– Use a for loop to iterate through and read the three fields for all records from the
input object into a StringBuilder object with appropriate labels (see example above)

– Display all the data in a showMessageDialog()

BinaryMiniQuiz1.java (Page 3)

The BufferedInputStream Class (Page 1)

“Wraps” around a FileInputStream object to speed up input by reducing the number of
disk reads

The whole block of data is read into the RAM buffer at once

The BufferedInputStream Class (Page 2)

A subclass of FilterInputStream

It has no methods of its own—all are inherited from InputStream

Located in the java.io package

import java.io.BufferedInputStream;

The BufferedInputStream Class (Page 3)

Format:

BufferedInputStream bufferedInputStreamObject = new BufferedInputStream(
fileInputStreamObject);

Example:

BufferedInputStream input = new BufferedInputStream(new FileInputStream(
"temp.dat"));

The BufferedInputStream Class (Page 4)

A DataInputStream can be “wrapped” around the BufferedInputStream to provide
functionality for reading primitives and strings:

DataInputStream dataInputStreamObject = new DataOutputStream(new
BufferedInputStream(fileInputStreamObject));

Example:

DataInputStream input = new DataInputStream(new BufferedInputStream(new
FileInputStream("temp.dat")));

The BufferedOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to speed up output by reducing the number
of disk writes

The whole block of data first is written into the RAM buffer; when the buffer is full, the
block is written to disk

The BufferedOutputStream Class (Page 2)

A subclass of FilterOutputStream

It has no methods of its own—all are inherited from OutputStream

Located in the java.io package

import java.io.BufferedOutputStream;

The BufferedOutputStream Class (Page 3)

Format:

BufferedOutputStream bufferedOutputStreamObject = new BufferedOutputStream(
fileOutputStreamObject);

Example:

BufferedOutputStream output = new BufferedOutputStream(new FileOutputStream(
"temp.dat"));

The BufferedOutputStream Class (Page 4)

A DataOutputStream can be “wrapped” around the BufferedOutputStream to provide
functionality to write primitives and strings:

DataOutputStream dataOutputStreamObject = new DataOutputStream(new
BufferedOutputStream(fileOutputStreamObject));

Example:

DataOutputStream input = new DataOutputStream(new BufferedOutputStream(new
FileOutputStream("temp.dat")));

BufferedIOStream.java (Page 1)

BufferedIOStream.java (Page 2)

BufferedIOStream.java (Page 3)

BufferedIOStream.java (Page 4)

BufferedIOStream.java (Page 5)

BufferedIOStream.java (Page 6)

The ObjectInputStream Class (Page 1)

“Wraps” around a FileInputStream object to give it the ability to read “serializable”
objects from the input stream

Reads primitives and strings as well (contains all the methods of class
DataInputStream)

Located in the java.io package

import java.io.ObjectInputStream;

The ObjectInputStream Class (Page 2)

Format:

ObjectInputStream objectInputStreamObject = new ObjectInputStream(
fileInputStreamObject);

Example:

ObjectInputStream input = new ObjectInputStream(new FileInputStream(
"temp.dat"));

The ObjectOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to give it the ability to write “serializable”
objects to the output stream

Writes primitives and strings as well (contains all the methods of class
DataOutputStream)

Located in the java.io package

import java.io.ObjectOutputStream;

The ObjectOutputStream Class (Page 2)

Format:

ObjectOutputStream objectOutputStreamObject = new ObjectOutputStream(
fileOutputStreamObject);

Example:

ObjectOutputStream input = new ObjectOutputStream(new FileOutputStream(
"temp.dat"));

The readObject() Method

A method of class ObjectInputStream that reads a “serializable” object from the input
stream

May throw a ClassNotFoundException because when the JVM restores the object, it
must first load the class into RAM

Format:

objectInputStreamObject.readObject ();

Example:

SuffolkResident student = input.readObject();

The writeObject() Method

A method of class ObjectInputString that writes a “serializable” object into the output
stream

Format:

objectOutputStreamObject.writeObject(object);

Example:

output.writeObject(new SuffolkResident());

ObjectIOStream.java (Page 1)

ObjectIOStream.java (Page 2)

ObjectIOStream.java (Page 3)

ObjectIOStream.java (Page 4)

ObjectIOStream.java (Page 5)

ObjectIOStream.java (Page 6)

Mini-Quiz No. 2 (Page 1)

Open the BlueJ project “binary-miniquizzes” and create a class named
“BinaryMiniQuiz2”:

– Create a static void method output() and instantiate object variable output from
class ObjectOutputStream

– Instantiate an object from class StringBuilder

– Get input from method showInputDialog() for three fields

•productID—an int

• item—a String

•price—a double

– Write the input fields to the StringBuilder object with labels (see example above)

– Write the StringBuilder object to the output file

BinaryMiniQuiz2.java (Page 1)

BinaryMiniQuiz2.java (Page 2)

Mini-Quiz No. 2 (Page 2)

Open the BlueJ project “binary-miniquizzes” and create a class named
“BinaryMiniQuiz2” (con):

– Create a static void method input() and instantiate an object variable input from
class ObjectInputStream

– Read the StringBuilder object and display all the data in a showMessageDialog()

BinaryMiniQuiz2.java (Page 3)

The Serializable Interface (Page 1)

Objects that can be written to the output stream are said to serializable

– Classes from which such objects are instantiated implement the Serializable
interface

To store an object, the JVM must store:

– The class name and its signature

– All current property (data field) values of the class and its superclasses

This process, called object serialization, is implemented in ObjectDataStream objects

Java API “StringBuilder”

The Serializable Interface (Page 2)

Format:

public class ClassName [extends ClassName] implements Serializable

{ …

Example:

public class Student extends Object implements Serializable

{ …

BinaryMiniQuiz2.java (Page 1)

Serializing Arrays (Page 1)

If all elements of an array are serializable, the array is serializable

An array can be saved using writeObject() and restored using readObject()

– Recall that arrays are objects

Serializing Arrays (Page 2)

Format for readObject():

type[] arrayObject = (castType[]) objectInputStreamObject.readObject();

– Method returns an object so it must be cast to the array object type

Example:

SuffolkResident[] student = (SuffolkResident[]) input.readObject();

Serializing Arrays (Page 3)

Format for writeObject():

objectInputStreamObject.readObject(arrayObject);

Example:

SuffolkResident[] student = new SuffolkResident[3];

…

output.writeObject(student);

Random Access Files (Page 1)

Refers to ability to access records from a data file at random

– The opposite of random access is sequential access in which data must be accessed
by passing through all intervening points

Enables reading or writing information from or to any point in the file

– In a sequential-access file, must be accessed starting from the beginning of the file

Random Access Files

Random Access Files (Page 2)

Disks are random access media

– Tapes are sequential access media

Sometimes also called direct access

The RandomAccessFile Class (Page 1)

Objects instantiated from this class have the ability to read and write randomly

Similar to FileWriter and FileReader in that a file can be specified on the system to
open when it is created it

– Use either “path/filename” string or File object

The RandomAccessFile Class (Page 2)

When opening a RandomAccessFile, indicate whether file just will be read from (“r”) or
also written to (“rw”)

– Must be able to read a file in order to write it

Located in the java.io package

import java.io.RandomAccessFile;

The RandomAccessFile Class (Page 3)

Format:

RandomAccessFile randomAccessObject = new RandomAccessFile("path/filename" |
fileObject, "r"/"rw");

– The strings “r” or “rw” are the access methods

Example:

RandomAccessFile studentFile = new RandomAccessFile("e:/studentFile.dat", "rw");

Random Access File Processing (Page 1)

After a random file is open, common read and write methods are defined in the
DataInput and DataOutput interfaces to perform I/O

– Class RandomAccessFile implements both DataInput and DataOutput

Random Access File Processing (Page 2)

For example:

– The writeInt() writes four bytes of numeric integer data to the file

– The readInt() reads four bytes of numeric integer data from the file

There are write and read methods for every primitive data type

The File Pointer

RandomAccessFile supports the notion of a file pointer:

– Indicates the current location in the file

– When the file is first created or opened, the file pointer is set to zero (0), indicating
the beginning of the file

– Calls to read and write methods advances the file pointer by the number of bytes
read or written

FilesStreams8.java (Page 1)

FilesStreams8.java (Page 2)

The seek() Method (Page 1)

A method of the RandomAccessFile class that sets moves the file-pointer position

– Measured in bytes from the beginning of file

– The location at which the next read or write operation will begin

The offset position often is calculated based upon which record is to be accessed next

The seek() Method (Page 2)

Format:

randomAccessObject.seek(long);

– long is a long integer value or variable, or an arithmetic expression that evaluates to
a long

Examples:

studentFile.seek(4);

studentFile.seek(4 * (courseNumber - 1));

The Data

The Index

FilesStreams9.java (Page 1)

FilesStreams9.java (Page 2)

FilesStreams9.java (Page 3)

FilesStreams10.java (Page 1)

FilesStreams10.java (Page 2)

FilesStreams10.java (Page 3)

The Data

Record Size

The Index

The length() Method for a RandomAccessFile Object

For a RandomAccessFile object, returns the length of the file measured in bytes

Format:

randomAccessFileName.length();

Example:

studentFile.seek(studentFile.length());

FilesStreams11.java (Page 1)

FilesStreams11.java (Page 2)

FilesStreams11.java (Page 3)

FilesStreams12.java (Page 1)

FilesStreams12.java (Page 2)

FilesStreams12.java (Page 3)

The readChar() Method for a RandomAccessFile Object

Reads a single character from an object instantiated from class RandomAccessFile

Format:

randomAccessFileObject.readChar();

Example:

chars[ctr] = inFile.readChar();

The getChars() Method for a String Object (Page 1)

Copies characters from String into a destination char array

Format:

stringObject.getChars(srcBegin, srcEnd, dest, destBegin);

– srcBegin—index of the first character to copy

– srcEnd—index after the last character to copy

– dest—the destination char array

– destBegin—start offset in destination char array

The getChars() Method for a String Object (Page 2)

Format:

stringObject.getChars(srcBegin, srcEnd, dest, destBegin);

Example:

outString.getChars(0, length, chars, 0);

– The variable chars is a char array

The writeChars() Method for a RandomAccessFile Object (Page 1)

Writes a String to as RandomAccessFile as a sequence of characters …

– Each character is written separately to the data output stream as though were being
written by the writeChar() method contained within a loop

The write operation starts at the current position of the file pointer

The writeChars() Method for a RandomAccessFile Object (Page 2)

Format:

randomAccessFileName.writeChars(String);

Example:

outFile.writeChars(new String(chars));

– The variable chars is a char array and String is a call to String constructor that takes
a char array

The DataInput and DataOutput Interfaces (Page 1)

DataInput—an interface that implements the reading bytes from a binary stream

– The bytes may be reconstructed into any of the Java primitive types

DataOutput—an interface that implements the writing bytes to a binary stream

– Data converted from any of the Java primitive types back to a series of bytes

The DataInput and DataOutput Interfaces (Page 2)

The RandomAccessFile class implements both the DataInput and DataOutput
interfaces

– Therefore a RandomAccessFile object “is a” DataInput object and “is a” DataOutput
object

Subtyping allows RandomAccessFile objects to be “assigned” to a DataInput or
DataOutput object

Found in the java.io package

import java.io.DataInput;

import java.io.DataOutput;

The DataInput and DataOutput Interfaces (Page 3)

Examples:

DataOutput courseFile = new RandomAccessFile("courseFile.dat", "rw")

– Subtyping when instantiating a RandomAccessFile object variable

public static String readFixedLengthString(int size, DataInput inFile)

– Subtyping when passing a RandomAccessFile object to a parameter variable

FixedLengthStringIO.java (Page 1)

FixedLengthStringIO.java (Page 2)

FixedLengthStringIO.java (Page 3)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

CST141—Binary I/O Page 8

Binary I/O

CST141

Binary Data

All data is stored in computers in binary format

– All ones (1) and zeros (0)

Text (including digits) is converted to some coding scheme (ASCII, Unicode, etc.)

Binary does not require conversions—the binary numeric value is written directly to the
file

InputStream and OutputStream

These are the abstract classes from which all binary input and output classes extend

An especially good example of inheritance from the Java API

All methods from all subclasses throw the checked IOException (or one of its
subclasses) which must be caught

– Must be imported from java.io

The Binary I/O Classes

The FileInputStream Class (Page 1)

Used for creating input streams that read only positive byte numeric data from a file

A subclass of InputStream

– Inherits the read() method that reads one byte of data to the stream

Located in the java.io package

import java.io.FileInputStream;

The FileInputStream Class (Page 2)

Format:

FileInputStream fileInputStreamObject = new FileInputStream("path/filename");

Throws a java.io.FileNotFoundException if the file does not exist

Throws a java.io.DirectoryNotFoundException if the folder on the drivedoes not exist

Examples:

FileInputStream input = new FileInputStream("temp.dat");

The FileOutputStream Class (Page 1)

Used for creating output stream objects that write only positive byte numeric data to a
file

A subclass of OutputStream

– Inherits the write() method that writes one byte of data to the stream

Located in the java.io package

import java.io.FileOutputStream;

The FileOutputStream Class (Page 2)

Format:

FileOutputStream fileOutputStreamObject = new FileOutputStream("path/filename");

Examples:

FileOutputStream input = new FileOutputStream("temp.dat");

The read() Method

A method of class FileInputStream (inherited from FileStream) that reads the next byte
of data from the input stream—from the file)

Format:

fileInputStreamObject.read();

Example:

byte credits = input.read();

The write() Method

A method of class FileInputStream (inherited from FileStream) that writes a specified
byte of data to the output stream—to the file)

Format:

fileOutputStreamObject.write(byteValue);

Example:

output.write(credits);

FileIO.java (Page 1)

FileIO.java (Page 2)

FileIO.java (Page 3)

FileIO.java (Page 4)

FileIO.java (Page 5)

FileIO.java (Page 6)

Filter Streams

The FilterInputStream and FilterOutputStream classes filter streams filter bytes for
some purpose

Subclasses of these two classes read and write integers, floats, strings, characters and
booleans

The DataInputStream Class (Page 1)

“Wraps” around a FileInputStream object to give it the ability to read integers, floats,
strings, booleans and characters

A subclass of FilterInputStream

Located in the java.io package

import java.io.DataInputStream;

The DataInputStream Class (Page 2)

Format:

DataInputStream dataInputStreamObject = new
DataInputStream(fileInputStreamObject);

Example:

DataInputStream input = new DataInputStream(new FileInputStream("temp.dat"));

The DataOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to give it the ability to write integers,
floats, strings, booleans and characters

A subclass of FilterOutputStream

Located in the java.io package

import java.io.DataOutputStream;

The DataOutputStream Class (Page 2)

Format:

DataOutputStream dataInputStreamObject = new
DataOutputStream(fileOutputStreamObject);

Example:

DataOutputStream input = new DataOutputStream(new FileOutputStream(
"temp.dat"));

Primitive Read Methods for Class DataInputStream (Page 1)

Reads primitives including integers, floats, booleans and characters from the input
stream—from a file):

– readByte()

– readChar()

– readFloat()

– readDouble()

– readInt()

– readLong()

– readShort()

– readBoolean()

Primitive Read Methods for Class DataInputStream (Page 2)

Format:

dataInputStreamObject.readPrimitive();

Example:

int credits = input.readInt();

The readUTF() Method

A method of class DataInputStream that reads a series of bytes from the input stream
that are in UTF-8 format and converts them into a string

Format:

dataInputStreamObject.readUTF();

Example:

String firstName = input.readUTF();

Primitive Write Methods for Class DataOutputStream (Page 1)

Writes primitives including integers, floats, booleans and characters to the output
stream—to a file):

– writeByte()

– writeChar()

– writeFloat()

– writeDouble()

– writeInt()

– writeLong()

– writeShort()

– writeBoolean()

Primitive Write Methods for Class DataOutputStream (Page 2)

Format:

dataOutputStreamObject.writePrimitive();

Example:

output.writeInt(credits);

The writeUTF() Method

A method of class DataInputString that converts a series of bytes into a string (UTF-8
format) and writes them into the output stream

Format:

dataInputStreamObject.readUTF();

Example:

ouput.readUTF(firstName);

DataIOStream.java (Page 1)

DataIOStream.java (Page 2)

DataIOStream.java (Page 3)

DataIOStream.java (Page 4)

DataIOStream.java (Page 5)

DataIOStream.java (Page 6)

Mini-Quiz No. 1 (Page 1)

Create a new BlueJ project named “binary-miniquizzes” and create a class named
“BinaryMiniQuiz1”

– Create a static void method output() and instantiate object variable output from
class DataOutputStream

– Use a for loop to iterate three times and get input from method showInputDialog()
for three fields

•productID—an int

• item—a String

•price—a double

– Write the three fields to the output object

BinaryMiniQuiz1.java (Page 1)

BinaryMiniQuiz1.java (Page 2)

Mini-Quiz No. 1 (Page 2)

Create a new BlueJ project named “binary-miniquizzes” and create a class named
“BinaryMiniQuiz1” (con):

– Create a static void method input() and instantiate an object variable input from
class DataInputStream

– Use a for loop to iterate through and read the three fields for all records from the
input object into a StringBuilder object with appropriate labels (see example above)

– Display all the data in a showMessageDialog()

BinaryMiniQuiz1.java (Page 3)

The BufferedInputStream Class (Page 1)

“Wraps” around a FileInputStream object to speed up input by reducing the number of
disk reads

The whole block of data is read into the RAM buffer at once

The BufferedInputStream Class (Page 2)

A subclass of FilterInputStream

It has no methods of its own—all are inherited from InputStream

Located in the java.io package

import java.io.BufferedInputStream;

The BufferedInputStream Class (Page 3)

Format:

BufferedInputStream bufferedInputStreamObject = new BufferedInputStream(
fileInputStreamObject);

Example:

BufferedInputStream input = new BufferedInputStream(new FileInputStream(
"temp.dat"));

The BufferedInputStream Class (Page 4)

A DataInputStream can be “wrapped” around the BufferedInputStream to provide
functionality for reading primitives and strings:

DataInputStream dataInputStreamObject = new DataOutputStream(new
BufferedInputStream(fileInputStreamObject));

Example:

DataInputStream input = new DataInputStream(new BufferedInputStream(new
FileInputStream("temp.dat")));

The BufferedOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to speed up output by reducing the number
of disk writes

The whole block of data first is written into the RAM buffer; when the buffer is full, the
block is written to disk

The BufferedOutputStream Class (Page 2)

A subclass of FilterOutputStream

It has no methods of its own—all are inherited from OutputStream

Located in the java.io package

import java.io.BufferedOutputStream;

The BufferedOutputStream Class (Page 3)

Format:

BufferedOutputStream bufferedOutputStreamObject = new BufferedOutputStream(
fileOutputStreamObject);

Example:

BufferedOutputStream output = new BufferedOutputStream(new FileOutputStream(
"temp.dat"));

The BufferedOutputStream Class (Page 4)

A DataOutputStream can be “wrapped” around the BufferedOutputStream to provide
functionality to write primitives and strings:

DataOutputStream dataOutputStreamObject = new DataOutputStream(new
BufferedOutputStream(fileOutputStreamObject));

Example:

DataOutputStream input = new DataOutputStream(new BufferedOutputStream(new
FileOutputStream("temp.dat")));

BufferedIOStream.java (Page 1)

BufferedIOStream.java (Page 2)

BufferedIOStream.java (Page 3)

BufferedIOStream.java (Page 4)

BufferedIOStream.java (Page 5)

BufferedIOStream.java (Page 6)

The ObjectInputStream Class (Page 1)

“Wraps” around a FileInputStream object to give it the ability to read “serializable”
objects from the input stream

Reads primitives and strings as well (contains all the methods of class
DataInputStream)

Located in the java.io package

import java.io.ObjectInputStream;

The ObjectInputStream Class (Page 2)

Format:

ObjectInputStream objectInputStreamObject = new ObjectInputStream(
fileInputStreamObject);

Example:

ObjectInputStream input = new ObjectInputStream(new FileInputStream(
"temp.dat"));

The ObjectOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to give it the ability to write “serializable”
objects to the output stream

Writes primitives and strings as well (contains all the methods of class
DataOutputStream)

Located in the java.io package

import java.io.ObjectOutputStream;

The ObjectOutputStream Class (Page 2)

Format:

ObjectOutputStream objectOutputStreamObject = new ObjectOutputStream(
fileOutputStreamObject);

Example:

ObjectOutputStream input = new ObjectOutputStream(new FileOutputStream(
"temp.dat"));

The readObject() Method

A method of class ObjectInputStream that reads a “serializable” object from the input
stream

May throw a ClassNotFoundException because when the JVM restores the object, it
must first load the class into RAM

Format:

objectInputStreamObject.readObject ();

Example:

SuffolkResident student = input.readObject();

The writeObject() Method

A method of class ObjectInputString that writes a “serializable” object into the output
stream

Format:

objectOutputStreamObject.writeObject(object);

Example:

output.writeObject(new SuffolkResident());

ObjectIOStream.java (Page 1)

ObjectIOStream.java (Page 2)

ObjectIOStream.java (Page 3)

ObjectIOStream.java (Page 4)

ObjectIOStream.java (Page 5)

ObjectIOStream.java (Page 6)

Mini-Quiz No. 2 (Page 1)

Open the BlueJ project “binary-miniquizzes” and create a class named
“BinaryMiniQuiz2”:

– Create a static void method output() and instantiate object variable output from
class ObjectOutputStream

– Instantiate an object from class StringBuilder

– Get input from method showInputDialog() for three fields

•productID—an int

• item—a String

•price—a double

– Write the input fields to the StringBuilder object with labels (see example above)

– Write the StringBuilder object to the output file

BinaryMiniQuiz2.java (Page 1)

BinaryMiniQuiz2.java (Page 2)

Mini-Quiz No. 2 (Page 2)

Open the BlueJ project “binary-miniquizzes” and create a class named
“BinaryMiniQuiz2” (con):

– Create a static void method input() and instantiate an object variable input from
class ObjectInputStream

– Read the StringBuilder object and display all the data in a showMessageDialog()

BinaryMiniQuiz2.java (Page 3)

The Serializable Interface (Page 1)

Objects that can be written to the output stream are said to serializable

– Classes from which such objects are instantiated implement the Serializable
interface

To store an object, the JVM must store:

– The class name and its signature

– All current property (data field) values of the class and its superclasses

This process, called object serialization, is implemented in ObjectDataStream objects

Java API “StringBuilder”

The Serializable Interface (Page 2)

Format:

public class ClassName [extends ClassName] implements Serializable

{ …

Example:

public class Student extends Object implements Serializable

{ …

BinaryMiniQuiz2.java (Page 1)

Serializing Arrays (Page 1)

If all elements of an array are serializable, the array is serializable

An array can be saved using writeObject() and restored using readObject()

– Recall that arrays are objects

Serializing Arrays (Page 2)

Format for readObject():

type[] arrayObject = (castType[]) objectInputStreamObject.readObject();

– Method returns an object so it must be cast to the array object type

Example:

SuffolkResident[] student = (SuffolkResident[]) input.readObject();

Serializing Arrays (Page 3)

Format for writeObject():

objectInputStreamObject.readObject(arrayObject);

Example:

SuffolkResident[] student = new SuffolkResident[3];

…

output.writeObject(student);

Random Access Files (Page 1)

Refers to ability to access records from a data file at random

– The opposite of random access is sequential access in which data must be accessed
by passing through all intervening points

Enables reading or writing information from or to any point in the file

– In a sequential-access file, must be accessed starting from the beginning of the file

Random Access Files

Random Access Files (Page 2)

Disks are random access media

– Tapes are sequential access media

Sometimes also called direct access

The RandomAccessFile Class (Page 1)

Objects instantiated from this class have the ability to read and write randomly

Similar to FileWriter and FileReader in that a file can be specified on the system to
open when it is created it

– Use either “path/filename” string or File object

The RandomAccessFile Class (Page 2)

When opening a RandomAccessFile, indicate whether file just will be read from (“r”) or
also written to (“rw”)

– Must be able to read a file in order to write it

Located in the java.io package

import java.io.RandomAccessFile;

The RandomAccessFile Class (Page 3)

Format:

RandomAccessFile randomAccessObject = new RandomAccessFile("path/filename" |
fileObject, "r"/"rw");

– The strings “r” or “rw” are the access methods

Example:

RandomAccessFile studentFile = new RandomAccessFile("e:/studentFile.dat", "rw");

Random Access File Processing (Page 1)

After a random file is open, common read and write methods are defined in the
DataInput and DataOutput interfaces to perform I/O

– Class RandomAccessFile implements both DataInput and DataOutput

Random Access File Processing (Page 2)

For example:

– The writeInt() writes four bytes of numeric integer data to the file

– The readInt() reads four bytes of numeric integer data from the file

There are write and read methods for every primitive data type

The File Pointer

RandomAccessFile supports the notion of a file pointer:

– Indicates the current location in the file

– When the file is first created or opened, the file pointer is set to zero (0), indicating
the beginning of the file

– Calls to read and write methods advances the file pointer by the number of bytes
read or written

FilesStreams8.java (Page 1)

FilesStreams8.java (Page 2)

The seek() Method (Page 1)

A method of the RandomAccessFile class that sets moves the file-pointer position

– Measured in bytes from the beginning of file

– The location at which the next read or write operation will begin

The offset position often is calculated based upon which record is to be accessed next

The seek() Method (Page 2)

Format:

randomAccessObject.seek(long);

– long is a long integer value or variable, or an arithmetic expression that evaluates to
a long

Examples:

studentFile.seek(4);

studentFile.seek(4 * (courseNumber - 1));

The Data

The Index

FilesStreams9.java (Page 1)

FilesStreams9.java (Page 2)

FilesStreams9.java (Page 3)

FilesStreams10.java (Page 1)

FilesStreams10.java (Page 2)

FilesStreams10.java (Page 3)

The Data

Record Size

The Index

The length() Method for a RandomAccessFile Object

For a RandomAccessFile object, returns the length of the file measured in bytes

Format:

randomAccessFileName.length();

Example:

studentFile.seek(studentFile.length());

FilesStreams11.java (Page 1)

FilesStreams11.java (Page 2)

FilesStreams11.java (Page 3)

FilesStreams12.java (Page 1)

FilesStreams12.java (Page 2)

FilesStreams12.java (Page 3)

The readChar() Method for a RandomAccessFile Object

Reads a single character from an object instantiated from class RandomAccessFile

Format:

randomAccessFileObject.readChar();

Example:

chars[ctr] = inFile.readChar();

The getChars() Method for a String Object (Page 1)

Copies characters from String into a destination char array

Format:

stringObject.getChars(srcBegin, srcEnd, dest, destBegin);

– srcBegin—index of the first character to copy

– srcEnd—index after the last character to copy

– dest—the destination char array

– destBegin—start offset in destination char array

The getChars() Method for a String Object (Page 2)

Format:

stringObject.getChars(srcBegin, srcEnd, dest, destBegin);

Example:

outString.getChars(0, length, chars, 0);

– The variable chars is a char array

The writeChars() Method for a RandomAccessFile Object (Page 1)

Writes a String to as RandomAccessFile as a sequence of characters …

– Each character is written separately to the data output stream as though were being
written by the writeChar() method contained within a loop

The write operation starts at the current position of the file pointer

The writeChars() Method for a RandomAccessFile Object (Page 2)

Format:

randomAccessFileName.writeChars(String);

Example:

outFile.writeChars(new String(chars));

– The variable chars is a char array and String is a call to String constructor that takes
a char array

The DataInput and DataOutput Interfaces (Page 1)

DataInput—an interface that implements the reading bytes from a binary stream

– The bytes may be reconstructed into any of the Java primitive types

DataOutput—an interface that implements the writing bytes to a binary stream

– Data converted from any of the Java primitive types back to a series of bytes

The DataInput and DataOutput Interfaces (Page 2)

The RandomAccessFile class implements both the DataInput and DataOutput
interfaces

– Therefore a RandomAccessFile object “is a” DataInput object and “is a” DataOutput
object

Subtyping allows RandomAccessFile objects to be “assigned” to a DataInput or
DataOutput object

Found in the java.io package

import java.io.DataInput;

import java.io.DataOutput;

The DataInput and DataOutput Interfaces (Page 3)

Examples:

DataOutput courseFile = new RandomAccessFile("courseFile.dat", "rw")

– Subtyping when instantiating a RandomAccessFile object variable

public static String readFixedLengthString(int size, DataInput inFile)

– Subtyping when passing a RandomAccessFile object to a parameter variable

FixedLengthStringIO.java (Page 1)

FixedLengthStringIO.java (Page 2)

FixedLengthStringIO.java (Page 3)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

Binary I/O

CST141

Binary Data

All data is stored in computers in binary format

– All ones (1) and zeros (0)

Text (including digits) is converted to some coding scheme (ASCII, Unicode, etc.)

Binary does not require conversions—the binary numeric value is written directly to the
file

InputStream and OutputStream

These are the abstract classes from which all binary input and output classes extend

An especially good example of inheritance from the Java API

All methods from all subclasses throw the checked IOException (or one of its
subclasses) which must be caught

– Must be imported from java.io

The Binary I/O Classes

The FileInputStream Class (Page 1)

Used for creating input streams that read only positive byte numeric data from a file

A subclass of InputStream

– Inherits the read() method that reads one byte of data to the stream

Located in the java.io package

import java.io.FileInputStream;

The FileInputStream Class (Page 2)

Format:

FileInputStream fileInputStreamObject = new FileInputStream("path/filename");

Throws a java.io.FileNotFoundException if the file does not exist

Throws a java.io.DirectoryNotFoundException if the folder on the drivedoes not exist

Examples:

FileInputStream input = new FileInputStream("temp.dat");

The FileOutputStream Class (Page 1)

Used for creating output stream objects that write only positive byte numeric data to a
file

A subclass of OutputStream

– Inherits the write() method that writes one byte of data to the stream

Located in the java.io package

import java.io.FileOutputStream;

The FileOutputStream Class (Page 2)

Format:

FileOutputStream fileOutputStreamObject = new FileOutputStream("path/filename");

Examples:

FileOutputStream input = new FileOutputStream("temp.dat");

The read() Method

A method of class FileInputStream (inherited from FileStream) that reads the next byte
of data from the input stream—from the file)

Format:

fileInputStreamObject.read();

Example:

byte credits = input.read();

The write() Method

A method of class FileInputStream (inherited from FileStream) that writes a specified
byte of data to the output stream—to the file)

Format:

fileOutputStreamObject.write(byteValue);

Example:

output.write(credits);

FileIO.java (Page 1)

FileIO.java (Page 2)

FileIO.java (Page 3)

FileIO.java (Page 4)

FileIO.java (Page 5)

FileIO.java (Page 6)

Filter Streams

The FilterInputStream and FilterOutputStream classes filter streams filter bytes for
some purpose

Subclasses of these two classes read and write integers, floats, strings, characters and
booleans

The DataInputStream Class (Page 1)

“Wraps” around a FileInputStream object to give it the ability to read integers, floats,
strings, booleans and characters

A subclass of FilterInputStream

Located in the java.io package

import java.io.DataInputStream;

The DataInputStream Class (Page 2)

Format:

DataInputStream dataInputStreamObject = new
DataInputStream(fileInputStreamObject);

Example:

DataInputStream input = new DataInputStream(new FileInputStream("temp.dat"));

The DataOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to give it the ability to write integers,
floats, strings, booleans and characters

A subclass of FilterOutputStream

Located in the java.io package

import java.io.DataOutputStream;

The DataOutputStream Class (Page 2)

Format:

DataOutputStream dataInputStreamObject = new
DataOutputStream(fileOutputStreamObject);

Example:

DataOutputStream input = new DataOutputStream(new FileOutputStream(
"temp.dat"));

Primitive Read Methods for Class DataInputStream (Page 1)

Reads primitives including integers, floats, booleans and characters from the input
stream—from a file):

– readByte()

– readChar()

– readFloat()

– readDouble()

– readInt()

– readLong()

– readShort()

– readBoolean()

Primitive Read Methods for Class DataInputStream (Page 2)

Format:

dataInputStreamObject.readPrimitive();

Example:

int credits = input.readInt();

The readUTF() Method

A method of class DataInputStream that reads a series of bytes from the input stream
that are in UTF-8 format and converts them into a string

Format:

dataInputStreamObject.readUTF();

Example:

String firstName = input.readUTF();

Primitive Write Methods for Class DataOutputStream (Page 1)

Writes primitives including integers, floats, booleans and characters to the output
stream—to a file):

– writeByte()

– writeChar()

– writeFloat()

– writeDouble()

– writeInt()

– writeLong()

– writeShort()

– writeBoolean()

Primitive Write Methods for Class DataOutputStream (Page 2)

Format:

dataOutputStreamObject.writePrimitive();

Example:

output.writeInt(credits);

The writeUTF() Method

A method of class DataInputString that converts a series of bytes into a string (UTF-8
format) and writes them into the output stream

Format:

dataInputStreamObject.readUTF();

Example:

ouput.readUTF(firstName);

DataIOStream.java (Page 1)

DataIOStream.java (Page 2)

DataIOStream.java (Page 3)

DataIOStream.java (Page 4)

DataIOStream.java (Page 5)

DataIOStream.java (Page 6)

Mini-Quiz No. 1 (Page 1)

Create a new BlueJ project named “binary-miniquizzes” and create a class named
“BinaryMiniQuiz1”

– Create a static void method output() and instantiate object variable output from
class DataOutputStream

– Use a for loop to iterate three times and get input from method showInputDialog()
for three fields

•productID—an int

• item—a String

•price—a double

– Write the three fields to the output object

BinaryMiniQuiz1.java (Page 1)

BinaryMiniQuiz1.java (Page 2)

Mini-Quiz No. 1 (Page 2)

Create a new BlueJ project named “binary-miniquizzes” and create a class named
“BinaryMiniQuiz1” (con):

– Create a static void method input() and instantiate an object variable input from
class DataInputStream

– Use a for loop to iterate through and read the three fields for all records from the
input object into a StringBuilder object with appropriate labels (see example above)

– Display all the data in a showMessageDialog()

BinaryMiniQuiz1.java (Page 3)

The BufferedInputStream Class (Page 1)

“Wraps” around a FileInputStream object to speed up input by reducing the number of
disk reads

The whole block of data is read into the RAM buffer at once

The BufferedInputStream Class (Page 2)

A subclass of FilterInputStream

It has no methods of its own—all are inherited from InputStream

Located in the java.io package

import java.io.BufferedInputStream;

The BufferedInputStream Class (Page 3)

Format:

BufferedInputStream bufferedInputStreamObject = new BufferedInputStream(
fileInputStreamObject);

Example:

BufferedInputStream input = new BufferedInputStream(new FileInputStream(
"temp.dat"));

The BufferedInputStream Class (Page 4)

A DataInputStream can be “wrapped” around the BufferedInputStream to provide
functionality for reading primitives and strings:

DataInputStream dataInputStreamObject = new DataOutputStream(new
BufferedInputStream(fileInputStreamObject));

Example:

DataInputStream input = new DataInputStream(new BufferedInputStream(new
FileInputStream("temp.dat")));

The BufferedOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to speed up output by reducing the number
of disk writes

The whole block of data first is written into the RAM buffer; when the buffer is full, the
block is written to disk

The BufferedOutputStream Class (Page 2)

A subclass of FilterOutputStream

It has no methods of its own—all are inherited from OutputStream

Located in the java.io package

import java.io.BufferedOutputStream;

The BufferedOutputStream Class (Page 3)

Format:

BufferedOutputStream bufferedOutputStreamObject = new BufferedOutputStream(
fileOutputStreamObject);

Example:

BufferedOutputStream output = new BufferedOutputStream(new FileOutputStream(
"temp.dat"));

The BufferedOutputStream Class (Page 4)

A DataOutputStream can be “wrapped” around the BufferedOutputStream to provide
functionality to write primitives and strings:

DataOutputStream dataOutputStreamObject = new DataOutputStream(new
BufferedOutputStream(fileOutputStreamObject));

Example:

DataOutputStream input = new DataOutputStream(new BufferedOutputStream(new
FileOutputStream("temp.dat")));

BufferedIOStream.java (Page 1)

BufferedIOStream.java (Page 2)

BufferedIOStream.java (Page 3)

BufferedIOStream.java (Page 4)

BufferedIOStream.java (Page 5)

BufferedIOStream.java (Page 6)

The ObjectInputStream Class (Page 1)

“Wraps” around a FileInputStream object to give it the ability to read “serializable”
objects from the input stream

Reads primitives and strings as well (contains all the methods of class
DataInputStream)

Located in the java.io package

import java.io.ObjectInputStream;

The ObjectInputStream Class (Page 2)

Format:

ObjectInputStream objectInputStreamObject = new ObjectInputStream(
fileInputStreamObject);

Example:

ObjectInputStream input = new ObjectInputStream(new FileInputStream(
"temp.dat"));

The ObjectOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to give it the ability to write “serializable”
objects to the output stream

Writes primitives and strings as well (contains all the methods of class
DataOutputStream)

Located in the java.io package

import java.io.ObjectOutputStream;

The ObjectOutputStream Class (Page 2)

Format:

ObjectOutputStream objectOutputStreamObject = new ObjectOutputStream(
fileOutputStreamObject);

Example:

ObjectOutputStream input = new ObjectOutputStream(new FileOutputStream(
"temp.dat"));

The readObject() Method

A method of class ObjectInputStream that reads a “serializable” object from the input
stream

May throw a ClassNotFoundException because when the JVM restores the object, it
must first load the class into RAM

Format:

objectInputStreamObject.readObject ();

Example:

SuffolkResident student = input.readObject();

The writeObject() Method

A method of class ObjectInputString that writes a “serializable” object into the output
stream

Format:

objectOutputStreamObject.writeObject(object);

Example:

output.writeObject(new SuffolkResident());

ObjectIOStream.java (Page 1)

ObjectIOStream.java (Page 2)

ObjectIOStream.java (Page 3)

ObjectIOStream.java (Page 4)

ObjectIOStream.java (Page 5)

ObjectIOStream.java (Page 6)

Mini-Quiz No. 2 (Page 1)

Open the BlueJ project “binary-miniquizzes” and create a class named
“BinaryMiniQuiz2”:

– Create a static void method output() and instantiate object variable output from
class ObjectOutputStream

– Instantiate an object from class StringBuilder

– Get input from method showInputDialog() for three fields

•productID—an int

• item—a String

•price—a double

– Write the input fields to the StringBuilder object with labels (see example above)

– Write the StringBuilder object to the output file

BinaryMiniQuiz2.java (Page 1)

BinaryMiniQuiz2.java (Page 2)

Mini-Quiz No. 2 (Page 2)

Open the BlueJ project “binary-miniquizzes” and create a class named
“BinaryMiniQuiz2” (con):

– Create a static void method input() and instantiate an object variable input from
class ObjectInputStream

– Read the StringBuilder object and display all the data in a showMessageDialog()

BinaryMiniQuiz2.java (Page 3)

The Serializable Interface (Page 1)

Objects that can be written to the output stream are said to serializable

– Classes from which such objects are instantiated implement the Serializable
interface

To store an object, the JVM must store:

– The class name and its signature

– All current property (data field) values of the class and its superclasses

This process, called object serialization, is implemented in ObjectDataStream objects

Java API “StringBuilder”

The Serializable Interface (Page 2)

Format:

public class ClassName [extends ClassName] implements Serializable

{ …

Example:

public class Student extends Object implements Serializable

{ …

BinaryMiniQuiz2.java (Page 1)

Serializing Arrays (Page 1)

If all elements of an array are serializable, the array is serializable

An array can be saved using writeObject() and restored using readObject()

– Recall that arrays are objects

Serializing Arrays (Page 2)

Format for readObject():

type[] arrayObject = (castType[]) objectInputStreamObject.readObject();

– Method returns an object so it must be cast to the array object type

Example:

SuffolkResident[] student = (SuffolkResident[]) input.readObject();

Serializing Arrays (Page 3)

Format for writeObject():

objectInputStreamObject.readObject(arrayObject);

Example:

SuffolkResident[] student = new SuffolkResident[3];

…

output.writeObject(student);

Random Access Files (Page 1)

Refers to ability to access records from a data file at random

– The opposite of random access is sequential access in which data must be accessed
by passing through all intervening points

Enables reading or writing information from or to any point in the file

– In a sequential-access file, must be accessed starting from the beginning of the file

Random Access Files

Random Access Files (Page 2)

Disks are random access media

– Tapes are sequential access media

Sometimes also called direct access

The RandomAccessFile Class (Page 1)

Objects instantiated from this class have the ability to read and write randomly

Similar to FileWriter and FileReader in that a file can be specified on the system to
open when it is created it

– Use either “path/filename” string or File object

The RandomAccessFile Class (Page 2)

When opening a RandomAccessFile, indicate whether file just will be read from (“r”) or
also written to (“rw”)

– Must be able to read a file in order to write it

Located in the java.io package

import java.io.RandomAccessFile;

The RandomAccessFile Class (Page 3)

Format:

RandomAccessFile randomAccessObject = new RandomAccessFile("path/filename" |
fileObject, "r"/"rw");

– The strings “r” or “rw” are the access methods

Example:

RandomAccessFile studentFile = new RandomAccessFile("e:/studentFile.dat", "rw");

Random Access File Processing (Page 1)

After a random file is open, common read and write methods are defined in the
DataInput and DataOutput interfaces to perform I/O

– Class RandomAccessFile implements both DataInput and DataOutput

Random Access File Processing (Page 2)

For example:

– The writeInt() writes four bytes of numeric integer data to the file

– The readInt() reads four bytes of numeric integer data from the file

There are write and read methods for every primitive data type

The File Pointer

RandomAccessFile supports the notion of a file pointer:

– Indicates the current location in the file

– When the file is first created or opened, the file pointer is set to zero (0), indicating
the beginning of the file

– Calls to read and write methods advances the file pointer by the number of bytes
read or written

FilesStreams8.java (Page 1)

FilesStreams8.java (Page 2)

The seek() Method (Page 1)

A method of the RandomAccessFile class that sets moves the file-pointer position

– Measured in bytes from the beginning of file

– The location at which the next read or write operation will begin

The offset position often is calculated based upon which record is to be accessed next

The seek() Method (Page 2)

Format:

randomAccessObject.seek(long);

– long is a long integer value or variable, or an arithmetic expression that evaluates to
a long

Examples:

studentFile.seek(4);

studentFile.seek(4 * (courseNumber - 1));

The Data

The Index

FilesStreams9.java (Page 1)

FilesStreams9.java (Page 2)

FilesStreams9.java (Page 3)

FilesStreams10.java (Page 1)

FilesStreams10.java (Page 2)

FilesStreams10.java (Page 3)

The Data

Record Size

The Index

The length() Method for a RandomAccessFile Object

For a RandomAccessFile object, returns the length of the file measured in bytes

Format:

randomAccessFileName.length();

Example:

studentFile.seek(studentFile.length());

FilesStreams11.java (Page 1)

FilesStreams11.java (Page 2)

FilesStreams11.java (Page 3)

FilesStreams12.java (Page 1)

FilesStreams12.java (Page 2)

FilesStreams12.java (Page 3)

The readChar() Method for a RandomAccessFile Object

Reads a single character from an object instantiated from class RandomAccessFile

Format:

randomAccessFileObject.readChar();

Example:

chars[ctr] = inFile.readChar();

The getChars() Method for a String Object (Page 1)

Copies characters from String into a destination char array

Format:

stringObject.getChars(srcBegin, srcEnd, dest, destBegin);

– srcBegin—index of the first character to copy

– srcEnd—index after the last character to copy

– dest—the destination char array

– destBegin—start offset in destination char array

The getChars() Method for a String Object (Page 2)

Format:

stringObject.getChars(srcBegin, srcEnd, dest, destBegin);

Example:

outString.getChars(0, length, chars, 0);

– The variable chars is a char array

The writeChars() Method for a RandomAccessFile Object (Page 1)

Writes a String to as RandomAccessFile as a sequence of characters …

– Each character is written separately to the data output stream as though were being
written by the writeChar() method contained within a loop

The write operation starts at the current position of the file pointer

The writeChars() Method for a RandomAccessFile Object (Page 2)

Format:

randomAccessFileName.writeChars(String);

Example:

outFile.writeChars(new String(chars));

– The variable chars is a char array and String is a call to String constructor that takes
a char array

The DataInput and DataOutput Interfaces (Page 1)

DataInput—an interface that implements the reading bytes from a binary stream

– The bytes may be reconstructed into any of the Java primitive types

DataOutput—an interface that implements the writing bytes to a binary stream

– Data converted from any of the Java primitive types back to a series of bytes

The DataInput and DataOutput Interfaces (Page 2)

The RandomAccessFile class implements both the DataInput and DataOutput
interfaces

– Therefore a RandomAccessFile object “is a” DataInput object and “is a” DataOutput
object

Subtyping allows RandomAccessFile objects to be “assigned” to a DataInput or
DataOutput object

Found in the java.io package

import java.io.DataInput;

import java.io.DataOutput;

The DataInput and DataOutput Interfaces (Page 3)

Examples:

DataOutput courseFile = new RandomAccessFile("courseFile.dat", "rw")

– Subtyping when instantiating a RandomAccessFile object variable

public static String readFixedLengthString(int size, DataInput inFile)

– Subtyping when passing a RandomAccessFile object to a parameter variable

FixedLengthStringIO.java (Page 1)

FixedLengthStringIO.java (Page 2)

FixedLengthStringIO.java (Page 3)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

Binary I/O

CST141

Binary Data

All data is stored in computers in binary format

– All ones (1) and zeros (0)

Text (including digits) is converted to some coding scheme (ASCII, Unicode, etc.)

Binary does not require conversions—the binary numeric value is written directly to the
file

InputStream and OutputStream

These are the abstract classes from which all binary input and output classes extend

An especially good example of inheritance from the Java API

All methods from all subclasses throw the checked IOException (or one of its
subclasses) which must be caught

– Must be imported from java.io

The Binary I/O Classes

The FileInputStream Class (Page 1)

Used for creating input streams that read only positive byte numeric data from a file

A subclass of InputStream

– Inherits the read() method that reads one byte of data to the stream

Located in the java.io package

import java.io.FileInputStream;

The FileInputStream Class (Page 2)

Format:

FileInputStream fileInputStreamObject = new FileInputStream("path/filename");

Throws a java.io.FileNotFoundException if the file does not exist

Throws a java.io.DirectoryNotFoundException if the folder on the drivedoes not exist

Examples:

FileInputStream input = new FileInputStream("temp.dat");

The FileOutputStream Class (Page 1)

Used for creating output stream objects that write only positive byte numeric data to a
file

A subclass of OutputStream

– Inherits the write() method that writes one byte of data to the stream

Located in the java.io package

import java.io.FileOutputStream;

The FileOutputStream Class (Page 2)

Format:

FileOutputStream fileOutputStreamObject = new FileOutputStream("path/filename");

Examples:

FileOutputStream input = new FileOutputStream("temp.dat");

The read() Method

A method of class FileInputStream (inherited from FileStream) that reads the next byte
of data from the input stream—from the file)

Format:

fileInputStreamObject.read();

Example:

byte credits = input.read();

The write() Method

A method of class FileInputStream (inherited from FileStream) that writes a specified
byte of data to the output stream—to the file)

Format:

fileOutputStreamObject.write(byteValue);

Example:

output.write(credits);

FileIO.java (Page 1)

FileIO.java (Page 2)

FileIO.java (Page 3)

FileIO.java (Page 4)

FileIO.java (Page 5)

FileIO.java (Page 6)

Filter Streams

The FilterInputStream and FilterOutputStream classes filter streams filter bytes for
some purpose

Subclasses of these two classes read and write integers, floats, strings, characters and
booleans

The DataInputStream Class (Page 1)

“Wraps” around a FileInputStream object to give it the ability to read integers, floats,
strings, booleans and characters

A subclass of FilterInputStream

Located in the java.io package

import java.io.DataInputStream;

The DataInputStream Class (Page 2)

Format:

DataInputStream dataInputStreamObject = new
DataInputStream(fileInputStreamObject);

Example:

DataInputStream input = new DataInputStream(new FileInputStream("temp.dat"));

The DataOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to give it the ability to write integers,
floats, strings, booleans and characters

A subclass of FilterOutputStream

Located in the java.io package

import java.io.DataOutputStream;

The DataOutputStream Class (Page 2)

Format:

DataOutputStream dataInputStreamObject = new
DataOutputStream(fileOutputStreamObject);

Example:

DataOutputStream input = new DataOutputStream(new FileOutputStream(
"temp.dat"));

Primitive Read Methods for Class DataInputStream (Page 1)

Reads primitives including integers, floats, booleans and characters from the input
stream—from a file):

– readByte()

– readChar()

– readFloat()

– readDouble()

– readInt()

– readLong()

– readShort()

– readBoolean()

Primitive Read Methods for Class DataInputStream (Page 2)

Format:

dataInputStreamObject.readPrimitive();

Example:

int credits = input.readInt();

The readUTF() Method

A method of class DataInputStream that reads a series of bytes from the input stream
that are in UTF-8 format and converts them into a string

Format:

dataInputStreamObject.readUTF();

Example:

String firstName = input.readUTF();

Primitive Write Methods for Class DataOutputStream (Page 1)

Writes primitives including integers, floats, booleans and characters to the output
stream—to a file):

– writeByte()

– writeChar()

– writeFloat()

– writeDouble()

– writeInt()

– writeLong()

– writeShort()

– writeBoolean()

Primitive Write Methods for Class DataOutputStream (Page 2)

Format:

dataOutputStreamObject.writePrimitive();

Example:

output.writeInt(credits);

The writeUTF() Method

A method of class DataInputString that converts a series of bytes into a string (UTF-8
format) and writes them into the output stream

Format:

dataInputStreamObject.readUTF();

Example:

ouput.readUTF(firstName);

DataIOStream.java (Page 1)

DataIOStream.java (Page 2)

DataIOStream.java (Page 3)

DataIOStream.java (Page 4)

DataIOStream.java (Page 5)

DataIOStream.java (Page 6)

Mini-Quiz No. 1 (Page 1)

Create a new BlueJ project named “binary-miniquizzes” and create a class named
“BinaryMiniQuiz1”

– Create a static void method output() and instantiate object variable output from
class DataOutputStream

– Use a for loop to iterate three times and get input from method showInputDialog()
for three fields

•productID—an int

• item—a String

•price—a double

– Write the three fields to the output object

BinaryMiniQuiz1.java (Page 1)

BinaryMiniQuiz1.java (Page 2)

Mini-Quiz No. 1 (Page 2)

Create a new BlueJ project named “binary-miniquizzes” and create a class named
“BinaryMiniQuiz1” (con):

– Create a static void method input() and instantiate an object variable input from
class DataInputStream

– Use a for loop to iterate through and read the three fields for all records from the
input object into a StringBuilder object with appropriate labels (see example above)

– Display all the data in a showMessageDialog()

BinaryMiniQuiz1.java (Page 3)

The BufferedInputStream Class (Page 1)

“Wraps” around a FileInputStream object to speed up input by reducing the number of
disk reads

The whole block of data is read into the RAM buffer at once

The BufferedInputStream Class (Page 2)

A subclass of FilterInputStream

It has no methods of its own—all are inherited from InputStream

Located in the java.io package

import java.io.BufferedInputStream;

The BufferedInputStream Class (Page 3)

Format:

BufferedInputStream bufferedInputStreamObject = new BufferedInputStream(
fileInputStreamObject);

Example:

BufferedInputStream input = new BufferedInputStream(new FileInputStream(
"temp.dat"));

The BufferedInputStream Class (Page 4)

A DataInputStream can be “wrapped” around the BufferedInputStream to provide
functionality for reading primitives and strings:

DataInputStream dataInputStreamObject = new DataOutputStream(new
BufferedInputStream(fileInputStreamObject));

Example:

DataInputStream input = new DataInputStream(new BufferedInputStream(new
FileInputStream("temp.dat")));

The BufferedOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to speed up output by reducing the number
of disk writes

The whole block of data first is written into the RAM buffer; when the buffer is full, the
block is written to disk

The BufferedOutputStream Class (Page 2)

A subclass of FilterOutputStream

It has no methods of its own—all are inherited from OutputStream

Located in the java.io package

import java.io.BufferedOutputStream;

The BufferedOutputStream Class (Page 3)

Format:

BufferedOutputStream bufferedOutputStreamObject = new BufferedOutputStream(
fileOutputStreamObject);

Example:

BufferedOutputStream output = new BufferedOutputStream(new FileOutputStream(
"temp.dat"));

The BufferedOutputStream Class (Page 4)

A DataOutputStream can be “wrapped” around the BufferedOutputStream to provide
functionality to write primitives and strings:

DataOutputStream dataOutputStreamObject = new DataOutputStream(new
BufferedOutputStream(fileOutputStreamObject));

Example:

DataOutputStream input = new DataOutputStream(new BufferedOutputStream(new
FileOutputStream("temp.dat")));

BufferedIOStream.java (Page 1)

BufferedIOStream.java (Page 2)

BufferedIOStream.java (Page 3)

BufferedIOStream.java (Page 4)

BufferedIOStream.java (Page 5)

BufferedIOStream.java (Page 6)

The ObjectInputStream Class (Page 1)

“Wraps” around a FileInputStream object to give it the ability to read “serializable”
objects from the input stream

Reads primitives and strings as well (contains all the methods of class
DataInputStream)

Located in the java.io package

import java.io.ObjectInputStream;

The ObjectInputStream Class (Page 2)

Format:

ObjectInputStream objectInputStreamObject = new ObjectInputStream(
fileInputStreamObject);

Example:

ObjectInputStream input = new ObjectInputStream(new FileInputStream(
"temp.dat"));

The ObjectOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to give it the ability to write “serializable”
objects to the output stream

Writes primitives and strings as well (contains all the methods of class
DataOutputStream)

Located in the java.io package

import java.io.ObjectOutputStream;

The ObjectOutputStream Class (Page 2)

Format:

ObjectOutputStream objectOutputStreamObject = new ObjectOutputStream(
fileOutputStreamObject);

Example:

ObjectOutputStream input = new ObjectOutputStream(new FileOutputStream(
"temp.dat"));

The readObject() Method

A method of class ObjectInputStream that reads a “serializable” object from the input
stream

May throw a ClassNotFoundException because when the JVM restores the object, it
must first load the class into RAM

Format:

objectInputStreamObject.readObject ();

Example:

SuffolkResident student = input.readObject();

The writeObject() Method

A method of class ObjectInputString that writes a “serializable” object into the output
stream

Format:

objectOutputStreamObject.writeObject(object);

Example:

output.writeObject(new SuffolkResident());

ObjectIOStream.java (Page 1)

ObjectIOStream.java (Page 2)

ObjectIOStream.java (Page 3)

ObjectIOStream.java (Page 4)

ObjectIOStream.java (Page 5)

ObjectIOStream.java (Page 6)

Mini-Quiz No. 2 (Page 1)

Open the BlueJ project “binary-miniquizzes” and create a class named
“BinaryMiniQuiz2”:

– Create a static void method output() and instantiate object variable output from
class ObjectOutputStream

– Instantiate an object from class StringBuilder

– Get input from method showInputDialog() for three fields

•productID—an int

• item—a String

•price—a double

– Write the input fields to the StringBuilder object with labels (see example above)

– Write the StringBuilder object to the output file

BinaryMiniQuiz2.java (Page 1)

BinaryMiniQuiz2.java (Page 2)

Mini-Quiz No. 2 (Page 2)

Open the BlueJ project “binary-miniquizzes” and create a class named
“BinaryMiniQuiz2” (con):

– Create a static void method input() and instantiate an object variable input from
class ObjectInputStream

– Read the StringBuilder object and display all the data in a showMessageDialog()

BinaryMiniQuiz2.java (Page 3)

The Serializable Interface (Page 1)

Objects that can be written to the output stream are said to serializable

– Classes from which such objects are instantiated implement the Serializable
interface

To store an object, the JVM must store:

– The class name and its signature

– All current property (data field) values of the class and its superclasses

This process, called object serialization, is implemented in ObjectDataStream objects

Java API “StringBuilder”

The Serializable Interface (Page 2)

Format:

public class ClassName [extends ClassName] implements Serializable

{ …

Example:

public class Student extends Object implements Serializable

{ …

BinaryMiniQuiz2.java (Page 1)

Serializing Arrays (Page 1)

If all elements of an array are serializable, the array is serializable

An array can be saved using writeObject() and restored using readObject()

– Recall that arrays are objects

Serializing Arrays (Page 2)

Format for readObject():

type[] arrayObject = (castType[]) objectInputStreamObject.readObject();

– Method returns an object so it must be cast to the array object type

Example:

SuffolkResident[] student = (SuffolkResident[]) input.readObject();

Serializing Arrays (Page 3)

Format for writeObject():

objectInputStreamObject.readObject(arrayObject);

Example:

SuffolkResident[] student = new SuffolkResident[3];

…

output.writeObject(student);

Random Access Files (Page 1)

Refers to ability to access records from a data file at random

– The opposite of random access is sequential access in which data must be accessed
by passing through all intervening points

Enables reading or writing information from or to any point in the file

– In a sequential-access file, must be accessed starting from the beginning of the file

Random Access Files

Random Access Files (Page 2)

Disks are random access media

– Tapes are sequential access media

Sometimes also called direct access

The RandomAccessFile Class (Page 1)

Objects instantiated from this class have the ability to read and write randomly

Similar to FileWriter and FileReader in that a file can be specified on the system to
open when it is created it

– Use either “path/filename” string or File object

The RandomAccessFile Class (Page 2)

When opening a RandomAccessFile, indicate whether file just will be read from (“r”) or
also written to (“rw”)

– Must be able to read a file in order to write it

Located in the java.io package

import java.io.RandomAccessFile;

The RandomAccessFile Class (Page 3)

Format:

RandomAccessFile randomAccessObject = new RandomAccessFile("path/filename" |
fileObject, "r"/"rw");

– The strings “r” or “rw” are the access methods

Example:

RandomAccessFile studentFile = new RandomAccessFile("e:/studentFile.dat", "rw");

Random Access File Processing (Page 1)

After a random file is open, common read and write methods are defined in the
DataInput and DataOutput interfaces to perform I/O

– Class RandomAccessFile implements both DataInput and DataOutput

Random Access File Processing (Page 2)

For example:

– The writeInt() writes four bytes of numeric integer data to the file

– The readInt() reads four bytes of numeric integer data from the file

There are write and read methods for every primitive data type

The File Pointer

RandomAccessFile supports the notion of a file pointer:

– Indicates the current location in the file

– When the file is first created or opened, the file pointer is set to zero (0), indicating
the beginning of the file

– Calls to read and write methods advances the file pointer by the number of bytes
read or written

FilesStreams8.java (Page 1)

FilesStreams8.java (Page 2)

The seek() Method (Page 1)

A method of the RandomAccessFile class that sets moves the file-pointer position

– Measured in bytes from the beginning of file

– The location at which the next read or write operation will begin

The offset position often is calculated based upon which record is to be accessed next

The seek() Method (Page 2)

Format:

randomAccessObject.seek(long);

– long is a long integer value or variable, or an arithmetic expression that evaluates to
a long

Examples:

studentFile.seek(4);

studentFile.seek(4 * (courseNumber - 1));

The Data

The Index

FilesStreams9.java (Page 1)

FilesStreams9.java (Page 2)

FilesStreams9.java (Page 3)

FilesStreams10.java (Page 1)

FilesStreams10.java (Page 2)

FilesStreams10.java (Page 3)

The Data

Record Size

The Index

The length() Method for a RandomAccessFile Object

For a RandomAccessFile object, returns the length of the file measured in bytes

Format:

randomAccessFileName.length();

Example:

studentFile.seek(studentFile.length());

FilesStreams11.java (Page 1)

FilesStreams11.java (Page 2)

FilesStreams11.java (Page 3)

FilesStreams12.java (Page 1)

FilesStreams12.java (Page 2)

FilesStreams12.java (Page 3)

The readChar() Method for a RandomAccessFile Object

Reads a single character from an object instantiated from class RandomAccessFile

Format:

randomAccessFileObject.readChar();

Example:

chars[ctr] = inFile.readChar();

The getChars() Method for a String Object (Page 1)

Copies characters from String into a destination char array

Format:

stringObject.getChars(srcBegin, srcEnd, dest, destBegin);

– srcBegin—index of the first character to copy

– srcEnd—index after the last character to copy

– dest—the destination char array

– destBegin—start offset in destination char array

The getChars() Method for a String Object (Page 2)

Format:

stringObject.getChars(srcBegin, srcEnd, dest, destBegin);

Example:

outString.getChars(0, length, chars, 0);

– The variable chars is a char array

The writeChars() Method for a RandomAccessFile Object (Page 1)

Writes a String to as RandomAccessFile as a sequence of characters …

– Each character is written separately to the data output stream as though were being
written by the writeChar() method contained within a loop

The write operation starts at the current position of the file pointer

The writeChars() Method for a RandomAccessFile Object (Page 2)

Format:

randomAccessFileName.writeChars(String);

Example:

outFile.writeChars(new String(chars));

– The variable chars is a char array and String is a call to String constructor that takes
a char array

The DataInput and DataOutput Interfaces (Page 1)

DataInput—an interface that implements the reading bytes from a binary stream

– The bytes may be reconstructed into any of the Java primitive types

DataOutput—an interface that implements the writing bytes to a binary stream

– Data converted from any of the Java primitive types back to a series of bytes

The DataInput and DataOutput Interfaces (Page 2)

The RandomAccessFile class implements both the DataInput and DataOutput
interfaces

– Therefore a RandomAccessFile object “is a” DataInput object and “is a” DataOutput
object

Subtyping allows RandomAccessFile objects to be “assigned” to a DataInput or
DataOutput object

Found in the java.io package

import java.io.DataInput;

import java.io.DataOutput;

The DataInput and DataOutput Interfaces (Page 3)

Examples:

DataOutput courseFile = new RandomAccessFile("courseFile.dat", "rw")

– Subtyping when instantiating a RandomAccessFile object variable

public static String readFixedLengthString(int size, DataInput inFile)

– Subtyping when passing a RandomAccessFile object to a parameter variable

FixedLengthStringIO.java (Page 1)

FixedLengthStringIO.java (Page 2)

FixedLengthStringIO.java (Page 3)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

CST141—Binary I/O Page 9

Binary I/O

CST141

Binary Data

All data is stored in computers in binary format

– All ones (1) and zeros (0)

Text (including digits) is converted to some coding scheme (ASCII, Unicode, etc.)

Binary does not require conversions—the binary numeric value is written directly to the
file

InputStream and OutputStream

These are the abstract classes from which all binary input and output classes extend

An especially good example of inheritance from the Java API

All methods from all subclasses throw the checked IOException (or one of its
subclasses) which must be caught

– Must be imported from java.io

The Binary I/O Classes

The FileInputStream Class (Page 1)

Used for creating input streams that read only positive byte numeric data from a file

A subclass of InputStream

– Inherits the read() method that reads one byte of data to the stream

Located in the java.io package

import java.io.FileInputStream;

The FileInputStream Class (Page 2)

Format:

FileInputStream fileInputStreamObject = new FileInputStream("path/filename");

Throws a java.io.FileNotFoundException if the file does not exist

Throws a java.io.DirectoryNotFoundException if the folder on the drivedoes not exist

Examples:

FileInputStream input = new FileInputStream("temp.dat");

The FileOutputStream Class (Page 1)

Used for creating output stream objects that write only positive byte numeric data to a
file

A subclass of OutputStream

– Inherits the write() method that writes one byte of data to the stream

Located in the java.io package

import java.io.FileOutputStream;

The FileOutputStream Class (Page 2)

Format:

FileOutputStream fileOutputStreamObject = new FileOutputStream("path/filename");

Examples:

FileOutputStream input = new FileOutputStream("temp.dat");

The read() Method

A method of class FileInputStream (inherited from FileStream) that reads the next byte
of data from the input stream—from the file)

Format:

fileInputStreamObject.read();

Example:

byte credits = input.read();

The write() Method

A method of class FileInputStream (inherited from FileStream) that writes a specified
byte of data to the output stream—to the file)

Format:

fileOutputStreamObject.write(byteValue);

Example:

output.write(credits);

FileIO.java (Page 1)

FileIO.java (Page 2)

FileIO.java (Page 3)

FileIO.java (Page 4)

FileIO.java (Page 5)

FileIO.java (Page 6)

Filter Streams

The FilterInputStream and FilterOutputStream classes filter streams filter bytes for
some purpose

Subclasses of these two classes read and write integers, floats, strings, characters and
booleans

The DataInputStream Class (Page 1)

“Wraps” around a FileInputStream object to give it the ability to read integers, floats,
strings, booleans and characters

A subclass of FilterInputStream

Located in the java.io package

import java.io.DataInputStream;

The DataInputStream Class (Page 2)

Format:

DataInputStream dataInputStreamObject = new
DataInputStream(fileInputStreamObject);

Example:

DataInputStream input = new DataInputStream(new FileInputStream("temp.dat"));

The DataOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to give it the ability to write integers,
floats, strings, booleans and characters

A subclass of FilterOutputStream

Located in the java.io package

import java.io.DataOutputStream;

The DataOutputStream Class (Page 2)

Format:

DataOutputStream dataInputStreamObject = new
DataOutputStream(fileOutputStreamObject);

Example:

DataOutputStream input = new DataOutputStream(new FileOutputStream(
"temp.dat"));

Primitive Read Methods for Class DataInputStream (Page 1)

Reads primitives including integers, floats, booleans and characters from the input
stream—from a file):

– readByte()

– readChar()

– readFloat()

– readDouble()

– readInt()

– readLong()

– readShort()

– readBoolean()

Primitive Read Methods for Class DataInputStream (Page 2)

Format:

dataInputStreamObject.readPrimitive();

Example:

int credits = input.readInt();

The readUTF() Method

A method of class DataInputStream that reads a series of bytes from the input stream
that are in UTF-8 format and converts them into a string

Format:

dataInputStreamObject.readUTF();

Example:

String firstName = input.readUTF();

Primitive Write Methods for Class DataOutputStream (Page 1)

Writes primitives including integers, floats, booleans and characters to the output
stream—to a file):

– writeByte()

– writeChar()

– writeFloat()

– writeDouble()

– writeInt()

– writeLong()

– writeShort()

– writeBoolean()

Primitive Write Methods for Class DataOutputStream (Page 2)

Format:

dataOutputStreamObject.writePrimitive();

Example:

output.writeInt(credits);

The writeUTF() Method

A method of class DataInputString that converts a series of bytes into a string (UTF-8
format) and writes them into the output stream

Format:

dataInputStreamObject.readUTF();

Example:

ouput.readUTF(firstName);

DataIOStream.java (Page 1)

DataIOStream.java (Page 2)

DataIOStream.java (Page 3)

DataIOStream.java (Page 4)

DataIOStream.java (Page 5)

DataIOStream.java (Page 6)

Mini-Quiz No. 1 (Page 1)

Create a new BlueJ project named “binary-miniquizzes” and create a class named
“BinaryMiniQuiz1”

– Create a static void method output() and instantiate object variable output from
class DataOutputStream

– Use a for loop to iterate three times and get input from method showInputDialog()
for three fields

•productID—an int

• item—a String

•price—a double

– Write the three fields to the output object

BinaryMiniQuiz1.java (Page 1)

BinaryMiniQuiz1.java (Page 2)

Mini-Quiz No. 1 (Page 2)

Create a new BlueJ project named “binary-miniquizzes” and create a class named
“BinaryMiniQuiz1” (con):

– Create a static void method input() and instantiate an object variable input from
class DataInputStream

– Use a for loop to iterate through and read the three fields for all records from the
input object into a StringBuilder object with appropriate labels (see example above)

– Display all the data in a showMessageDialog()

BinaryMiniQuiz1.java (Page 3)

The BufferedInputStream Class (Page 1)

“Wraps” around a FileInputStream object to speed up input by reducing the number of
disk reads

The whole block of data is read into the RAM buffer at once

The BufferedInputStream Class (Page 2)

A subclass of FilterInputStream

It has no methods of its own—all are inherited from InputStream

Located in the java.io package

import java.io.BufferedInputStream;

The BufferedInputStream Class (Page 3)

Format:

BufferedInputStream bufferedInputStreamObject = new BufferedInputStream(
fileInputStreamObject);

Example:

BufferedInputStream input = new BufferedInputStream(new FileInputStream(
"temp.dat"));

The BufferedInputStream Class (Page 4)

A DataInputStream can be “wrapped” around the BufferedInputStream to provide
functionality for reading primitives and strings:

DataInputStream dataInputStreamObject = new DataOutputStream(new
BufferedInputStream(fileInputStreamObject));

Example:

DataInputStream input = new DataInputStream(new BufferedInputStream(new
FileInputStream("temp.dat")));

The BufferedOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to speed up output by reducing the number
of disk writes

The whole block of data first is written into the RAM buffer; when the buffer is full, the
block is written to disk

The BufferedOutputStream Class (Page 2)

A subclass of FilterOutputStream

It has no methods of its own—all are inherited from OutputStream

Located in the java.io package

import java.io.BufferedOutputStream;

The BufferedOutputStream Class (Page 3)

Format:

BufferedOutputStream bufferedOutputStreamObject = new BufferedOutputStream(
fileOutputStreamObject);

Example:

BufferedOutputStream output = new BufferedOutputStream(new FileOutputStream(
"temp.dat"));

The BufferedOutputStream Class (Page 4)

A DataOutputStream can be “wrapped” around the BufferedOutputStream to provide
functionality to write primitives and strings:

DataOutputStream dataOutputStreamObject = new DataOutputStream(new
BufferedOutputStream(fileOutputStreamObject));

Example:

DataOutputStream input = new DataOutputStream(new BufferedOutputStream(new
FileOutputStream("temp.dat")));

BufferedIOStream.java (Page 1)

BufferedIOStream.java (Page 2)

BufferedIOStream.java (Page 3)

BufferedIOStream.java (Page 4)

BufferedIOStream.java (Page 5)

BufferedIOStream.java (Page 6)

The ObjectInputStream Class (Page 1)

“Wraps” around a FileInputStream object to give it the ability to read “serializable”
objects from the input stream

Reads primitives and strings as well (contains all the methods of class
DataInputStream)

Located in the java.io package

import java.io.ObjectInputStream;

The ObjectInputStream Class (Page 2)

Format:

ObjectInputStream objectInputStreamObject = new ObjectInputStream(
fileInputStreamObject);

Example:

ObjectInputStream input = new ObjectInputStream(new FileInputStream(
"temp.dat"));

The ObjectOutputStream Class (Page 1)

“Wraps” around a FileOutputStream object to give it the ability to write “serializable”
objects to the output stream

Writes primitives and strings as well (contains all the methods of class
DataOutputStream)

Located in the java.io package

import java.io.ObjectOutputStream;

The ObjectOutputStream Class (Page 2)

Format:

ObjectOutputStream objectOutputStreamObject = new ObjectOutputStream(
fileOutputStreamObject);

Example:

ObjectOutputStream input = new ObjectOutputStream(new FileOutputStream(
"temp.dat"));

The readObject() Method

A method of class ObjectInputStream that reads a “serializable” object from the input
stream

May throw a ClassNotFoundException because when the JVM restores the object, it
must first load the class into RAM

Format:

objectInputStreamObject.readObject ();

Example:

SuffolkResident student = input.readObject();

The writeObject() Method

A method of class ObjectInputString that writes a “serializable” object into the output
stream

Format:

objectOutputStreamObject.writeObject(object);

Example:

output.writeObject(new SuffolkResident());

ObjectIOStream.java (Page 1)

ObjectIOStream.java (Page 2)

ObjectIOStream.java (Page 3)

ObjectIOStream.java (Page 4)

ObjectIOStream.java (Page 5)

ObjectIOStream.java (Page 6)

Mini-Quiz No. 2 (Page 1)

Open the BlueJ project “binary-miniquizzes” and create a class named
“BinaryMiniQuiz2”:

– Create a static void method output() and instantiate object variable output from
class ObjectOutputStream

– Instantiate an object from class StringBuilder

– Get input from method showInputDialog() for three fields

•productID—an int

• item—a String

•price—a double

– Write the input fields to the StringBuilder object with labels (see example above)

– Write the StringBuilder object to the output file

BinaryMiniQuiz2.java (Page 1)

BinaryMiniQuiz2.java (Page 2)

Mini-Quiz No. 2 (Page 2)

Open the BlueJ project “binary-miniquizzes” and create a class named
“BinaryMiniQuiz2” (con):

– Create a static void method input() and instantiate an object variable input from
class ObjectInputStream

– Read the StringBuilder object and display all the data in a showMessageDialog()

BinaryMiniQuiz2.java (Page 3)

The Serializable Interface (Page 1)

Objects that can be written to the output stream are said to serializable

– Classes from which such objects are instantiated implement the Serializable
interface

To store an object, the JVM must store:

– The class name and its signature

– All current property (data field) values of the class and its superclasses

This process, called object serialization, is implemented in ObjectDataStream objects

Java API “StringBuilder”

The Serializable Interface (Page 2)

Format:

public class ClassName [extends ClassName] implements Serializable

{ …

Example:

public class Student extends Object implements Serializable

{ …

BinaryMiniQuiz2.java (Page 1)

Serializing Arrays (Page 1)

If all elements of an array are serializable, the array is serializable

An array can be saved using writeObject() and restored using readObject()

– Recall that arrays are objects

Serializing Arrays (Page 2)

Format for readObject():

type[] arrayObject = (castType[]) objectInputStreamObject.readObject();

– Method returns an object so it must be cast to the array object type

Example:

SuffolkResident[] student = (SuffolkResident[]) input.readObject();

Serializing Arrays (Page 3)

Format for writeObject():

objectInputStreamObject.readObject(arrayObject);

Example:

SuffolkResident[] student = new SuffolkResident[3];

…

output.writeObject(student);

Random Access Files (Page 1)

Refers to ability to access records from a data file at random

– The opposite of random access is sequential access in which data must be accessed
by passing through all intervening points

Enables reading or writing information from or to any point in the file

– In a sequential-access file, must be accessed starting from the beginning of the file

Random Access Files

Random Access Files (Page 2)

Disks are random access media

– Tapes are sequential access media

Sometimes also called direct access

The RandomAccessFile Class (Page 1)

Objects instantiated from this class have the ability to read and write randomly

Similar to FileWriter and FileReader in that a file can be specified on the system to
open when it is created it

– Use either “path/filename” string or File object

The RandomAccessFile Class (Page 2)

When opening a RandomAccessFile, indicate whether file just will be read from (“r”) or
also written to (“rw”)

– Must be able to read a file in order to write it

Located in the java.io package

import java.io.RandomAccessFile;

The RandomAccessFile Class (Page 3)

Format:

RandomAccessFile randomAccessObject = new RandomAccessFile("path/filename" |
fileObject, "r"/"rw");

– The strings “r” or “rw” are the access methods

Example:

RandomAccessFile studentFile = new RandomAccessFile("e:/studentFile.dat", "rw");

Random Access File Processing (Page 1)

After a random file is open, common read and write methods are defined in the
DataInput and DataOutput interfaces to perform I/O

– Class RandomAccessFile implements both DataInput and DataOutput

Random Access File Processing (Page 2)

For example:

– The writeInt() writes four bytes of numeric integer data to the file

– The readInt() reads four bytes of numeric integer data from the file

There are write and read methods for every primitive data type

The File Pointer

RandomAccessFile supports the notion of a file pointer:

– Indicates the current location in the file

– When the file is first created or opened, the file pointer is set to zero (0), indicating
the beginning of the file

– Calls to read and write methods advances the file pointer by the number of bytes
read or written

FilesStreams8.java (Page 1)

FilesStreams8.java (Page 2)

The seek() Method (Page 1)

A method of the RandomAccessFile class that sets moves the file-pointer position

– Measured in bytes from the beginning of file

– The location at which the next read or write operation will begin

The offset position often is calculated based upon which record is to be accessed next

The seek() Method (Page 2)

Format:

randomAccessObject.seek(long);

– long is a long integer value or variable, or an arithmetic expression that evaluates to
a long

Examples:

studentFile.seek(4);

studentFile.seek(4 * (courseNumber - 1));

The Data

The Index

FilesStreams9.java (Page 1)

FilesStreams9.java (Page 2)

FilesStreams9.java (Page 3)

FilesStreams10.java (Page 1)

FilesStreams10.java (Page 2)

FilesStreams10.java (Page 3)

The Data

Record Size

The Index

The length() Method for a RandomAccessFile Object

For a RandomAccessFile object, returns the length of the file measured in bytes

Format:

randomAccessFileName.length();

Example:

studentFile.seek(studentFile.length());

FilesStreams11.java (Page 1)

FilesStreams11.java (Page 2)

FilesStreams11.java (Page 3)

FilesStreams12.java (Page 1)

FilesStreams12.java (Page 2)

FilesStreams12.java (Page 3)

The readChar() Method for a RandomAccessFile Object

Reads a single character from an object instantiated from class RandomAccessFile

Format:

randomAccessFileObject.readChar();

Example:

chars[ctr] = inFile.readChar();

The getChars() Method for a String Object (Page 1)

Copies characters from String into a destination char array

Format:

stringObject.getChars(srcBegin, srcEnd, dest, destBegin);

– srcBegin—index of the first character to copy

– srcEnd—index after the last character to copy

– dest—the destination char array

– destBegin—start offset in destination char array

The getChars() Method for a String Object (Page 2)

Format:

stringObject.getChars(srcBegin, srcEnd, dest, destBegin);

Example:

outString.getChars(0, length, chars, 0);

– The variable chars is a char array

The writeChars() Method for a RandomAccessFile Object (Page 1)

Writes a String to as RandomAccessFile as a sequence of characters …

– Each character is written separately to the data output stream as though were being
written by the writeChar() method contained within a loop

The write operation starts at the current position of the file pointer

The writeChars() Method for a RandomAccessFile Object (Page 2)

Format:

randomAccessFileName.writeChars(String);

Example:

outFile.writeChars(new String(chars));

– The variable chars is a char array and String is a call to String constructor that takes
a char array

The DataInput and DataOutput Interfaces (Page 1)

DataInput—an interface that implements the reading bytes from a binary stream

– The bytes may be reconstructed into any of the Java primitive types

DataOutput—an interface that implements the writing bytes to a binary stream

– Data converted from any of the Java primitive types back to a series of bytes

The DataInput and DataOutput Interfaces (Page 2)

The RandomAccessFile class implements both the DataInput and DataOutput
interfaces

– Therefore a RandomAccessFile object “is a” DataInput object and “is a” DataOutput
object

Subtyping allows RandomAccessFile objects to be “assigned” to a DataInput or
DataOutput object

Found in the java.io package

import java.io.DataInput;

import java.io.DataOutput;

The DataInput and DataOutput Interfaces (Page 3)

Examples:

DataOutput courseFile = new RandomAccessFile("courseFile.dat", "rw")

– Subtyping when instantiating a RandomAccessFile object variable

public static String readFixedLengthString(int size, DataInput inFile)

– Subtyping when passing a RandomAccessFile object to a parameter variable

FixedLengthStringIO.java (Page 1)

FixedLengthStringIO.java (Page 2)

FixedLengthStringIO.java (Page 3)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

Project 7: Chapter 17
(Exercise No. 17.7, pp. 753-754)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

