CST14—Exception Handling and Text 1/0 Page 1

13

19

Handling Exceptions and Text 1/0
CST141

Exceptions (Page 1)
ElExceptional events that occur during run-time that disrupt the program’s normal flow
Ellncluding but not limited to:

— An array index out-of-bounds

— Arithmetic overflow

— Division by zero for integers

—Trying to parse a string with a invalid numeric format to a numeric value

Exceptions (Page 2)
ElExceptions may come from abnormal events generated during run-time, or ...

ElThey also may be generated manually by programmers to handle events that could
result in an invalid operation taking place

Using if Statements to Catch Potential Exceptions
ElIn previous example, a run-time exception may be generated if a user enters:
— The value zero (0) for denominator (computers cannot divide integers by zero)
— Non-integer values entered for either ints from nextInt() method of the Scanner
object
ElDisadvantage of if processing:
— Validation checking must take place for both valid and invalid values
— Easy to miss some errors

Using Methods and System.exit to Catch Potential Exceptions
g1t is possible to use if processing in a called method and the System.exit() method to
handle potential exceptions
—Terminates program execution
ElExample:
if (denominator == 0)
{
System.out.printin("Cannot divide by zero");
System.exit(2);
}

Exception Processing (Page 1)

ElDeal with abnormal events occurring as a result of some process during program
execution

ElMakes sense to use exception processing when the alternative is that program will:
—Crash, or ...
— Place the application into an inconsistent state

ElUsed in large systems to handle abnormal events in a standardized manner

CST14—Exception Handling and Text 1/0

20

21

22

23

Exception Processing (Page 2)
ElGeneration of an non-normal event is called “throwing an exception”
EJOccurs when a method detects an event during run-time with which it cannot deal

ElChecks the type of exception to see if its parameters match one of a set of exception
handling procedures

Keywords try and catch (Page 1)
EJA block of code in which statements with the potential to “throw” an exception are
placed within a try block

EIn the same method, the try block is followed immediately by one or more catch
blocks:

— Each catch block is an exception handling routine (procedure)

— Specifies the type of exception that it can handle—each exception type is a Class
name

Keywords try and catch (Page 2)
gFormat:
try
{
code that may throw an exception
}
catch (ExceptionType exceptionObject)
{
exception handling code
}
catch (ExceptionType exceptionObject)
{
another exception handling code

}

—objectVariable references exception information

Keywords try and catch (Page 3)
ElExample:
try
{
numberl = reader.nextInt();
number2 = reader.nextInt();
quotient = numberl / number2;
}
catch (InputMismatchException ex)

{

System.out.print("Non-integer input");

Page 2

CST14—Exception Handling and Text 1/0

24

25

26

27

32

33

catch (ArithmeticException ex)
{
System.out.print("Division by zero");

}

Keywords try and catch (Page 4)
EJIf an exception occurs, the program:
— Abandons the try block
— Attempts to find a catch block that matches the exception type
ElIf an exception type matches the exception, its catch block is executed

Keywords try and catch (Page 5)
EJIf the exception fails to match the type of any catch block, none of the catch blocks
are executed:
— Application may terminate (“crash” or “hang”)
— Or the application could be placed into an inconsistent state (e.g. if an arithmetic
overflow occurred, an invalid result may be stored)

Keywords try and catch (Page 6)

EJIf no exceptions are thrown during execution of the try block, the try block completes
and the catch blocks are ignored

ElProgram execution continues with any statements that follow the last catch block
— True either way whether there was any exception was thrown or not

The toString() Method of Exception Objects
EJA method of the exception object variable (ex) that returns a String representation of
the error message
EFormat:
exceptionObject.toString()
ElExamples:
System.out.printIn(ex.toString());
System.out.println(ex);

The Javadoc @throws Tag

ElJavadoc tag that names an exception that a method may throw and provides
additional explanation how that exception might occur

ElExample:
/**

*

* @throws ArithmeticException if denominator is zero (0)

*/
The Exception Class (Page 1)
ElExceptions generated by the occurrence of an exception which are built into the JVM

Page 3

CST14—Exception Handling and Text 1/0

34

36

40

41

42

(Java Virtual Machine)
— Exception is the super class for all exceptions

ElThe Exception class automatically throws an exception so programmer does not have
to write the if logic to check for it

The Exception Class (Page 2)

ElFor example, InputMismatchException is an Exception thrown whenever nextInt() for a

Scanner object fails to return an int

— This includes non-integers as well as strings

— True of all “next” methods for primitive types for the Scanner class

— Effectively an Exception is thrown every time a InputMismatchException is thrown
(as is any exception subclass)

The Exception Class (Page 3)

ElWould it not be simpler just to specify the Exception class all the time?

Ellmplementing every potential exception lets the programmer provide specific
feedback to the user

Sequencing of catch Blocks (Page 1)

EJEvery catch block must be reachable

ElSuperclass exception catch blocks must follow their respective subclass exception
catch blocks

ElFailure to adhere to this principle will result in compile errors

Sequencing of catch Blocks (Page 2)

ElExample of invalid sequencing:

catch (Exception ex)
{

System.out.print("Invalid input");
}
catch (InputMismatchException ex)
{

System.out.print("Invalid input");
}

catch (ArithmeticException ex)

{
System.out.print("Divide by zero");
}
Some Exception Classes (Page 1)
ElException

— Generated when any exception occurs
— The superclass of all exception classes
EINullPointerException

Page 4

CST14—Exception Handling and Text 1/0 Page 5

43

44

45

52

53

54

— Attempting to reference an object that does not exist (declared but has not been
instantiated)

Some Exception Classes (Page 2)
EJArithmeticException

— Division by zero (0) (for integers only) and some other arithmetic exceptions
ElInputMismatchException

— For a Scanner object, the input does not match the expected pattern for the
method, e.g. for a nextInt()

— Located in the java.util package
import java.util.InputMismatchException;

Some Exception Classes (Page 3)
EJArrayIndexOutOfBoundsException

— Array index is outside the allowable range
EINegativeArraySizeException

— Declaring an array with a negative integer size
EINumberFormatException

— Attempt to parse a non-numeric string to a numeric value

— Or attempt to parse a string with digits and a decimal to an integer type

Which Exceptions to Catch?

ElHow do I know which exceptions will be thrown by the methods I use in my
programs?

EJAll potential exceptions are listed in the on-line Java API documentation for each
method

The Keyword finally (Page 1)
ElSpecifies a block that will be executed after the try ... catch blocks have been
evaluated
ElGuaranteed to be executed:
— Whether or not an exception is thrown
— No matter which catch block is executed
—Whether or not one of the catch blocks executes after an exception is thrown

The Keyword finally (Page 2)

ElUsually designed to release resources that may have been assigned (but not released
if an exception occurred) during the try block
—E.g. files, memory, etc.

EIf application does not catch the exception, the finally block still will execute before

the program crashes
The Keyword finally (Page 3)

gFormat:
try

CST14—Exception Handling and Text 1/0

60

61

62

66

{ statements ... }

catch (OneException objectName)

{ statements ... }

catch (AnotherException objectName)
{ statements ... }

finally

{

Statements;

}

The Keyword throws
EIThe keyword throws sometimes is used in a method header to declare the exceptions
that are thrown by that method
gFormat:
private/public type methodName([params]) throws ExceptionList { ...
EFormat:
public int quotient(int numerator, int denominator) throws ArithmeticException { ...

The Keyword throw (Page 1)

ElManually throws an exception from the called method back to the location of the
method call in the try block

ElUsed in methods of programmer-defined exception classes that throw exceptions

EIRequired if an exception will be thrown in a “called” method but the try...catch logic is
located in the “calling” method

The Keyword throw (Page 2)
gFormat:

throw new ExceptionType([argumentList]);
ElExample:

if (denominator == 0)

{

throw new DivideByZeroException();

}

— The functionality is similar to a return statement (terminates processing of the
method and passes new exception object back to calling method)

Exception Classes
E/Written by a programmer to extend some Java API exception type
ElThey typically have two constructors (which is similar to Java API exception classes):

— One that takes no arguments and specifies a hard-coded default exception
message

— One that takes a string argument—usually a more specific exception message

Page 6

CST14—Exception Handling and Text 1/0 Page 7

72 The getMessage() Method

EIMethod of the exception object that returns a descriptive String message stored in an
exception object reference
— Either a default or programmer custom message

EFormat:
exceptionObject.getMessage()

ElExample:
JOptionPane.showMessageDialog(null, ex.getMessage());

73 The printStackTrace() Method (Page 1)
ElDisplays the following:
— The exception type
— The exact statement in the execution of the Java class that threw the exception

—If more than one method was involved, the sequence of method calls leading to the
exception (in reverse order of the calls)

EJOutputs to the standard error stream ...
— Usually the command line or console window

74 The printStackTrace() Method (Page 2)
gFormat:
exceptionObjectName.printStackTrace();
ElExample:
ex.printStackTrace();
— Not a returned String that can be displayed (the statement stands alone)

79 File and Database Examples
ElBanking records including ATM's
ElOrder entry and billing
ElPersonnel and payroll
ElCustomer, client, contacts, etc.
Ellnventory control
ElCourse scheduling, student records including schedule as well as tuition and fees

82 Files in Java

ElJava has no specific functionality to impose structure on data in a file
EJProgrammer writes code to organize the data manually into files, records and fields

83 Streams
ElJava represents text data in Unicode characters composed of two bytes
EJA stream is a series of characters used for input or output

E)In Java there are several classes used for I/O (input/output) stored in (and imported
from) the java.io package

84 The Standard Output Stream

CST14—Exception Handling and Text 1/0 Page 8

85

86

87

88

89

90

EIMember of class System, called System.out
EIBy default, it is associated with the console (terminal window) ...

— But can be changed to another output device, e.g. a disk output file
EINormally uses print() and println() to direct output to the console

— But if redirected to disk, print() and printIn() will write to a file

The Standard Input Stream
EIMember of class System, called System.in
EIBy default, it is associated with the console (keyboard) ...
— But can be changed to another input device, e.g. an disk input file
EINormally a Scanner object uses next(), nextlnt(), etc. to read input from console
— But if redirected to disk, next() and nextInt() will read from a file

Output to a Sequential (Text) Disk File
Requires four (4) steps:
1. Create a File object and associate it with a disk file
2. Assign the File object as the argument to the constructor of a new PrintWriter
object giving it output functionality
3. Write information to the PrintWriter output file using methods print() and printin()
4. At the end close() the file

The File Class (Page 1)

EJA reference type (object) that encapsulates (stores) information about a file
- E.g. filename, path, etc.
— As per Step 1 previously

ElFound in the java.io package
import java.io.File;

The File Class (Page 2)
EFormat:
File fileObject = new File("path/filename")
—The path is the folder structure that is relative to the folder that contains the “.class”
file
ElExample:
File file = new File("App_Data/names.txt");

The PrintWriter Class (Page 1)

ElTakes a File object as argument to the constructor
— As per Step 2 previously

EJA object of type PrintWriter gives “write to file" functionality to the print() and printin()
methods

ElFound in the java.io package
import java.io.PrintWriter;

The PrintWriter Class (Page 2)

CST14—Exception Handling and Text 1/0

91

92

93

94

95

96

EFormat:

PrintWriter printWriterObject = new PrintWriter(fileWriterObject);
EJExamples:

PrintWriter outWriter = new PrintWriter(file);

Using printin() and print() with a PrintWriter Object (Page 1)
ElMembers of an object instantiated from the PrintWriter class
E/Writes characters to a text output file

— An alternate to sending output to System.out

— As per Step 3 previously

Using printin() and print() with a PrintWriter Object (Page 2)
EIFormats:
printWriterObject.printin(outputObject);
printWriterObject.print(outputObject);
ElExample:
outWriter.printIn(name);

The close() Method (Page 1)

EJA method of most I/O objects that closes a file stream object
— As per Step 4 previously

gIFor output files:
— Ensures that all data is written to disk (none remains in RAM output buffer)
— Places trailer labels (needed by O/S) at the end of file

The close() Method (Page 2)
EFormat:

inputOrOutputObject.close();

— Either PrintWriter or Scanner object
ElExample:

outWriter.close();

The IOException Class (Page 1)

EJAn exception that has the potential to be thrown for any statement that reads from or
writes to a file

ElSuper class to FileNotFoundException and EOFException

The IOException Class (Page 2)

EJAIl /O operations have the potential to throw an exception
— Always use try...catch with an IOException for I/O operations (or declare the
IOException in a throws clause in the method header)
— The compiler requires this "catch” since IOException is considered a “checked”
exception
ElLocated in the java.io package
import java.io IOException;

Page 9

CST14—Exception Handling and Text 1/0

97

98

103

105

106

107

The IOException Class (Page 3)
EFormat:

catch (IOException exceptionObject)
EJExample:

try

{

}

catch (IOException ex)

{

}
The IOException Class (Page 4)

ElFor documentation it may be named in a throws clause, e.g.
public static void main(String[] args) throws IOException

Combining Object Definitions (File and PrintWriter)
ElFile and PrintWriter objects can be declared together in a single statement
ElThe two (2) statements:
File file = new FileWriter("App_Data/names.txt");
PrintWriter outWriter = new PrintWriter(file);
ElCombined become a single statement:
PrintWriter outWriter = new PrintWriter(new File("App_Data/names.txt"));

Input from a Sequential (Text) Disk File
Requires four (4) steps:
1. Create a File object and associate it with a disk file

2. Assign the File object (rather than System.in) as the argument to the constructor
of a new Scanner object giving it input functionality

3. Read information from the Scanner input file using methods next() , nextInt(), etc.

4. At the end close() the file

The Scanner Class for File Input (Page 1)

ElThe same Scanner class used for input from the keyboard (System.in) but which uses
a File object to give it disk file input functionality
— As per Step 2 previously

ElObject gives "read from file" functionality to next(), nextInt() and other Scanner
methods

ElLocated in the java.util package
import java.io.Scanner;

The Scanner Class for File Input (Page 2)
gIFormat:

Page 10

CST14—Exception Handling and Text 1/0

108

109

113

114

115

116

Scanner scannerObject = new Scanner(fileObject);
ElExamples:
Scanner inReader = new Scanner(file);
Scanner inReader = new Scanner(new File("App_Data/names.txt"));

The nextPrimitive() Methods for File Input (Page 1)

ElSame set of methods learned previously from the Scanner class but applied to objects
instantiated using a File object

EIReads string and/or primitive token (value) from an input file
— As per Step 3 previously
— A token is all the characters up to the next blank space or a new line

The nextPrimitive() Methods for File Input (Page 2)
gFormat:

scannerObject.nextPrimitiveType();
ElExamples:

String name = inReader.next();

int age = inReader.nextInt();

The JFileChooser Class (Page 1)

ElClass used for selecting files with “Open” and “Save” dialogs

ElOptional String argument in the call to the constructor method is the path of the
default directory when the dialog first displays ...

ElLocated in the javax.swing package
import javax.swing.JFileChooser;

The JFileChooser Class (Page 2)
gFormat:
JFileChooser fileChooserObject = new JFileChooser(["path"]);
—The path is the folder structure that is relative to the folder that contains the “.class’
file
ElExample:
JFileChooser fileChooser = new JFileChooser("App_Data");

4

The showOpenDialog() Method (Page 1)
ElMethod is a member of objects instantiated from the JFileChooser object
ElDisplays a GUI “Open” dialog window
ElAllows users to select path and filename of the file to be opened
ElArgument specifies where the dialog will be displayed:

—this—centered in the dialog's parent window

— null—centered on the screen

The showOpenDialog() Method (Page 2)

EIReturns an int which specifies which button in dialog was clicked, <Open> or
<Cancel>

Page 11

CST14—Exception Handling and Text 1/0

117

118

119

124

125

ElProgrammer may test the return value by comparing it to static constants:
— JFileChooser APPROVE_OPTION (value = 0)
— JFileChooser.CANCEL_OPTION (value = 1)

Consider the following example:
if (result == JFileChooser. APPROVE_OPTION)

The showOpenDialog() Method (Page 3)

EFormat:
JFileChooserObject.showOpenDialog(this/null);

ElExample:
result = fileChooser.showOpenDialog(null);

ElThe int return value indicates which button was clicked, <Open> or <Cancel>
if (result == JFileChooser.CANCEL_OPTION)

The getSelectedFile() Method (Page 1)

EJA method of a JFileChooser object that returns a File object

ElThe returned object is the JFileChooser’s path and filename selected by the user in an
"Open” or "Save” dialog

EJReturns object of type File (not a String)

The getSelectedFile() Method (Page 2)

EFormat:
JFileChooserObject.getSelectedFile();
ElExample:

File fileName = fileChooser.getSelectedFile();
— Method getSelectedFile() is considered a helper method since it returns an object
of type File even though is not a constructor

The showSaveDialog() Method (Page 1)
ElMethod is a member of objects instantiated from the JFileChooser object
ElDisplays a GUI "Save" dialog window
EJAllows users to select the path and enter the filename of the file to be saved
EJArgument is the same as showOpenDialog (specifies where dialog will be displayed):
—this—centered in the dialog's parent window
— null—centered on the screen

The showSaveDialog() Method (Page 2)

gFormat:
JFileChooserObject.showSaveDialog(this/null);
ElExample:

result = fileChooser.showSaveDialog(null);
if (fileChooser.showSaveDialog(null) == JFileChooser.APPROVE_OPTION)

Page 12

