CST141—JavaFX Events and Animation Page 1

1 JavaFX Events and Animation
CST141

2 Event Handling
* GUI components generate events when users interact with controls
+ Typical events (there are dozens) include:
— Clicking the mouse
— Moving the mouse
—Typing in a text box (TextField)

3 Event Listeners
 To process an event, the programmer must:
— Define one or more event handler classes/methods
— Register (declare) an event listener

* When an event occurs, GUI component notifies the listener by calling the event's
handling method(s)

4 The EventHandler Interface (Page 1)
+ EventHandler is a Java APl interface used to manage event listening and event handling
for Buttons and other JavaFX GUI components
» Objects instantiated from a class that implements the EventHandler interface “are”
event handlers, e.g. "Is an EventHandler”
* Imported from javafx.event package:
import javafx.event.EventHandler;

5 The EventHandler Interface (Page 2)
» Format (nested inside the Application class):
private class EventHandlerClassName implements EventHandler <ActionEvent>
{..
—implements rather than extends
» Example:
private class ButtonEventHandler implements EventHandler<ActionEvent>

(..

6 The ActionEvent Class (Page 1)

» ActionEvent is the generic <SubType> for the interface EventHandler and represents
action information for a GUI object like a Button

 Imported from javafx.event package:
import javafx.event.ActionEvent;

7 The ActionEvent Class (Page 2)
* Example:

private class ButtonEventHandler implements EventHandler <ActionEvent>

{

CST141—JavaFX Events and Animation Page 2

10

11

12

13

@Override
public void handle(ActionEvent e)

(.

The handle Method (Page 1)

* The abstract method handle() is a member of the EventHandler interface and must be
defined in any class that implements it

* If a user clicks a Button and “event listening” is activated for that object, the method
handle() automatically is called

The handle Method (Page 2)
+ A parameter variable “e” of type ActionEvent is defined for the method and provides

access to ActionEvent methods and properties
* Example:

private class ButtonEventHandler implements EventHandler<ActionEvent>

{

@Override
public void handle(ActionEvent e)

{..

Instantiating an EventHandler Object

* To instantiate the object, an EventHandler class must have been defined previously
* Format:

EventHandlerClass eventHandlerObject = new EventHandlerConstructor();
* Example:

ButtonEventHandler eventHandler = new ButtonEventHandler();

The setOnAction Method (Page 1)

» Method of a Button (and other “action listener” GUI components) that assign an
EventHandler object to the component

* The “event handler” object instantiated from the EventHandler is the argument to the
method

+ This method effectively activates event listening

» Must be executed for every GUI component that will be an event listener

The setOnAction Method (Page 2)
* Format:

guiComponentObject.setOnAction(eventHandlerObject);
* Example:

button.setOnAction(eventHandler);

— The GUI component ‘button’ is a Button

Steps to Create Event Handler (Summary)

e The event handler method:
1. Create a "nested” class that implements interface EventHandler (within JavaFX

CST141—JavaFX Events and Animation Page 3

15

17

18

19

21

Application class)
2. Create a method handle() in that class
» Register event listening in the start() method:
3. Instantiate an object from the class that implements the interface EventHandler
4. For each Button call the method setOnAction()

The getSource Method
» Method of an ActionEvent object that “points” to address of the object that initiated the
event
* Format:
actionEventObject.getSource()
— actionEventObject is the parameter variable “e” in method handle()
* Example:
public void handle(ActionEvent e)
{
if (e.getSource() == buttonOK) ...

The getText Method

* Returns the String property currently stored in a TextField (or another GUI component
that has a text property) object

» For a TextField, the text property is the value currently displayed in the text box

* Format:
textFieldObject.getText()

» Example:
String sFirst = firstNumber.getText();

The setText Method

+ Sets the contents of a TextField object (or some other GUI component that has a text
property) to a new value

* Format:
textFieldObject setText(string)

* Example:
resultField.setText(resultString);

The setEditable Method
» Sets a boolean property that determines if a TextField object may be edited by a user
» Frequently is set to false if the object will be used exclusively for output
* Format:
textFieldObject.setEditable(true/false)
* Example:
resultField.setEditable(false);

The selectAll Method
» A method of class TextField (inherited from class TextComponent «— TextField) that

CST141—JavaFX Events and Animation

selects all the text in the object
— As if it had been selected with a mouse
* Format:
node.selectAll();
* Example:
inputAge.selectAll();
— In this example variable inputAge is a TextBox

28 Anonymous Inner Classes(Page 1)
» An anonymous inner class is an event handler without a name
— Located inside the definition of the application window in the start() method
 Defined within the setOnAction() method
+ Combines creating the object (Button or other object) with defining of the class

29 Anonymous Inner Classes(Page 2)
* Format:
ClassName object = new ConstructorName(...);
object.setOnAction(new EventHandler<ActionEvent>
{
@Override
public void handle(ActionEvent event)

{

statements

}
)i
30 Anonymous Inner Classes(Page 3)
* Format:
Button buttonOK = new Button("OK");
buttonOK.setOnAction(new EventHandler<ActionEvent>

{
@Override

public void handle(ActionEvent event)

{
System.out.printIn("OK clicked");

}
);
32 Lambda Expression Event Handling (Page 1)

* Lambda expression event handling is a new feature in Java 8 which replaces the
anonymous inner class with a more consise syntax

* Also defined within setOnAction() method combining creation of object (Button or

Page 4

CST141—JavaFX Events and Animation

33

34

37

38

41

other node) with a single method that replaces the class

Lambda Expression Event Handling (Page 2)
* Format:
ClassName object = new ConstructorName(...);
object.setOnAction((e) ->
{
statements
}
);
— The parameter variable e (or other programmer-defined variables) may be explicitly
declared by type or the type inferred by the compiler)

Lambda Expression Event Handling (Page 3)
* Example:

Button buttonOK = new Button("OK");

buttonOK.setOnAction((e) ->

{

System.out.printIn("OK clicked");

}

)i
Lambda Expression Event Handling (Page 4)

» The Lambda expression may point directly to a method call
+ Also the parameter variable e does not have to be wrapped inside (parentheses)

Lambda Expression Event Handling (Page 5)
* Format:
ClassName object = new ConstructorName(...);
object.setOnAction(e -> methodCall());
» Examples:
Button buttonOK = new Button("OK");
buttonOK.setOnAction(e -> JOptionPane.showMessageDialog(null, "OK button was
clicked"));

Button buttonMale = new Button("Male");
buttonMale.setOnAction(e -> maleUser());

The PathTransition Class (Page 1)
» Used to create a “path” which is the "border” of one shape node along which another
node travels, e.g.:
— A Rectangle node object traverses along the outer border of a Circle node object
— An ImageView node object displaying an image traverses along a Line node object
* Imported from javafx.animation package:

Page 5

CST141—JavaFX Events and Animation Page 6

42

43

45

46

47

import javafx.animation.PathTransition;

The PathTransition Class (Page 2)
» Format to instantiate a PathTransition object:
PathTransition object = new PathTransition();
* Example:
PathTransition path = new PathTransition();

The setDuration Method (Page 1)

* For a PathTransition object, sets the amount of time that it takes the node object to
traverse the “path” one time

¢ Amount of time is measure in milliseconds (1000 milliseconds is one second)
— Default is 400 milliseconds (0.4 seconds)

The setDuration Method (Page 2)
* The setDuration() method takes an argument from one of the methods of class
Duration:
* These methods include:
Duration.millis(double) // milliseconds
Duration.seconds(double)
Duration.minutes(double)
Duration.hours(double)

* Class is imported from javafx.util package:
import javafx.util.Duration;

The setDuration Method (Page 3)
* Format:

pathTransitionObject.setDuration(Duration.methodName(double));
» Example:

path.setDuration(Duration.millis(5000));

— 5000 milliseconds is five seconds

path.setDuration(Duration.seconds(5));

— Same as previous

The setPath Method
* For a PathTransition object, sets (names) the node (e.g. Circle, Rectangle, Line, etc.)
object that is the “path” for another node object to follow
* Format:
pathTransitionObject.setPath(nodeObject);
— nodeObject becomes the “path”
* Example:
path.setPath(circle);

The setNode Method

CST141—JavaFX Events and Animation

48

49

50

51

* For a PathTransition object, sets (names) the animated node (e.g. Circle, Rectangle, etc.)
that follows the "path”
* Format:
pathTransitionObject.setNode(nodeObject);
— nodeObject is the node that follows the “path”
* Example:
path.setNode(rectangle);

The setOrientation Method (Page 1)
* For a PathTransition object, sets the “upright orientation” of the node object along path
* The method takes an enum constants from class PathTransition.OrientationType:
PathTransition.OrientationType.NONE
* The node stays upright (default)
PathTransition.OrientationType.ORTHOGONAL_TO_TANGENT
» The node rotates to keep perpendicular with the path

The setOrientation Method (Page 2)

* Format:
pathTransitionObject.setOrientation(orientationType);

» Examples:
path.setOrientation(PathTransition.OrientationType.ORTHOGONAL_TO_TANGENT);
path.setOrientation(PathTransition.OrientationType.NONE);

The setCycleCount Method (Page 1)
 For a PathTransition object, sets the number of times traversal of the "path” will be
repeated
— Default is 1
* Method is inherited from superclass Animation
* Format:
pathTransitionObject.setCycleCount(int);
— int is the number of repetitions
» Examples:
path.setCycleCount(5);

The setCycleCount Method (Page 2)
» The INDEFINITE constant from class Timeline specifies that an animation repeats
indefinitely
» Class imported from javafx.animation package:
import javafx.animation.Timeline;
* Format:
pathTransitionObject.setCycleCount(Timeline INDEFINITE);
* Example:
path.setCycleCount(Timeline.INDEFINITE);

Page 7

CST141—JavaFX Events and Animation Page 8

52

53

54

55

56

The setAutoReverse Method
* For a PathTransition object, sets boolean property which determines whether the
animation reverses direction on each alternating cycle
— Default is false (in which case the animation loops)
» Method is inherited from superclass Animation
* Format:
pathTransitionObject.setAutoReverse(true / false);
» Examples:
path.setAutoReverse(true);

The play Method
* For a PathTransition object, starts animation running (has no effect if already running)
* Method is inherited from superclass Animation
* Format:
pathTransitionObject.play();
* Examples:
path.play();

The pause Method

* For a PathTransition object, pauses running animation (has no effect if not currently
running)

+ Continues from same point when it runs again

» Method is inherited from superclass Animation

* Format:
pathTransitionObject.pause();

» Examples:
path.pause();

The stop Method

» For a PathTransition object, stops a running animation and resets play to back initial
position (has no effect if not currently running)

* Method is inherited from superclass Animation

* Format:
pathTransitionObject.stop();
+ Examples:
path.stop();

The setOnMousePressed Method

* For shape nodes (Circle, Rectangle, etc.) defines an event handler that responds when a
user clicks and holds down the mouse on that object

» Format using a lambda expression:
node.setOnMousePressed(e -> method());
— Could be any method, even programmer-defined class

CST141—JavaFX Events and Animation

57

59

60

61

62

63

* Example:
circle.setOnMousePressed(e -> path.pause());

The setOnMouseReleased Method

* For shape nodes (Circle, Rectangle, etc.) defines an event handler that responds when a

user release the mouse from that object
+ Format using a lambda expression:
node.setOnMouseReleased(e -> method());
— Could be any method, even programmer-defined class
* Example:
circle.setOnMouseReleased(e -> path.play());

Subclasses of Pane (Page 1)

* Objects instantiated from a class that extends class Pane contain JavaFX node objects
and can be placed directly into a Scene

* Format:
public class ClassName extends Pane { ... }

* Example:
public class StickMan extends Pane { ... }

Subclasses of Pane (Page 2)

+ Example to instantiate the object:
StickMan stickman = new StickMan();

» Example to place Pane object into Scene:
Scene scene = new Scene(stickMan, 300, 300);

The KeyEvent Class (Page 1)

» The KeyEvent class is a generic subtype that provides functionality for JavaFX
applications to respond to keyboard events
— Alternative to ActionEvent class for mouse events

* Imported from javafx.scene.input package:
import javafx.scene.input.KeyEvent;

The KeyEvent Class (Page 2)
» The method setOnKeyPressed() “attaches” an event handler for the keyboard to a
JavaFX object
» Format with a lambda expression:
object.setOnKeyPressed(e -> keyEventHandlerMethod (e));
—e is the KeyEvent parameter
* Example:
scene.setOnKeyPressed(e -> moveStickMan(e));

The KeyEvent Class (Page 3)

* For keyboard events, class KeyEvent is the object variable type for the “event”
parameter in method handler's header

Page 9

CST141—JavaFX Events and Animation Page 10

* Format:
public void keyEventHandlerMethod(KeyEvent e)
{..}

* Example:
public void moveStickMan(KeyEvent e)

{..}

64 The getCode Method (Page 1)
* For the ActionEvent parameter of method handle(), the getCode() method returns a
code for non-displaying keyboard keys, e.g.:
— DOWN, UP, ALT, CONTROL, etc.
* Format:
e.getCode()

65 The getCode Method (Page 2)
* Example:
if (e.getCode() == DOWN)
{
y +=10;
}
else if (e.getCode() == UP)
{
y -=10;
}
else if (e.getCode() == LEFT)
{
x -=10;
}
else if (e.getCode() == RIGHT)
{
x +=10;
}

67 The switch Statement (Page 1)
* A Java structure that can be used to implement a linear nested function
—In place of: (if ... elseif ... else if ...)
* The value of a single variable or expression can be tested for multiple “equal to” values

68 The switch Statement (Page 2)
* The keyword break terminates execution of the switch structure when a true code block
finishes executing
— Otherwise program execution will “crash” into subsequent cases
« A final optional default case may be specified and executes if all the previous cases are
false

CST141—JavaFX Events and Animation

69 Format of switch Structure
switch (testExpression)
{
case value:
statement(s) to be executed when
this case is true go here;
break;
case value:
statement(s) to be executed when
this case is true go here;
break;
[case ...]

[default:
statement(s) to be executed when
no case is true go here;]

}

70 Example of switch Structure
switch (e.getCode())
{
case DOWN:
y +=10;
break;
case UP:

case LEFT:
x -=10;
break;
case RIGHT:
X +=10;
break;
}

71 Equivalent of switch
if (e.getCode() == DOWN)
{
y +=10;
}
else if (e.getCode() == UP)
{

Page 11

CST141—JavaFX Events and Animation Page 12

y -=10;
}
else if (e.getCode() == LEFT)
{
x -=10;
}
else if (e.getCode() == RIGHT)
{
X +=10;
}

72 Testing for More than One true case in a switch
» Two or more true cases may evaluate as being equivalent as follows:
switch (e.getCode())
{
case LEFT:
case BACKSPACE:
x -=10;
break;

}
— Evaluates as true if e.getCode() returns either LEFT or BACKSPACE

74 The Ternary Operator (Page 1)
* The ternary operator (?) returns one of two values depending upon the value of a
booleanExpression
* It can be used as an alternative to Java if/else syntax, but it actually goes beyond that

— It can be used on the right side of Java assignment statements as well as in other
operations

* Format:
booleanExpession ? valuelfTrue : valuelffalse

75 The Ternary Operator (Page 2)
» Example 1:
int x
x=(x>400)?0:x+5;
» Equivalent:
if (x > 400)

CST141—JavaFX Events and Animation Page 13

X=x+5;
}
76 The Ternary Operator (Page 3)

* Example 2:
System.out.printin("The x-coordinateis " + (x > 400) ? 0: x + 5;

