CST141--Inheritance

1/] Objected-Oriented and Inheritance
CST141

2(J) ooP
E)Object-Oriented Programming is characterized by three features:
—Encapsulation
—Inheritance
*New classes created from (extends) existing classes by absorbing (inheriting)
their attributes/properties (instance variables) and behaviors (methods)
— Polymorphism
« The ability of an object to take on many forms; a common use occurs in OOP
when a parent class reference is used to refer to a child class object

4[] Code Duplication without Inheritance
ElClasses that operate on similar entities often have many identical elements
—Makes maintenance difficult/more work
— Introduces danger of bugs through incorrect maintenance
E)Code duplication also can carry over introducing problems to the driver classes

5[] Inheritance
ElWhen a new class is created, it inherits the instance variables and methods of any
previously defined superclass
E)This subclass gets its /nitial features from the direct superclass
EJAn indirect superclass is inherited from wo or more levels above in a class hierarchy

6(] The Subclass
E)The subclass is usually /argerthan its superclass ...

— Because it adds instance variables and methods of its own to those of the
superclass

—Also it is possible to define additions to, or replacements for, inherited superclass
features

)1t is more specific than the superclass ...
—Therefore it has a smaller number of situations in which it can be used

7/c] The Superclass
EJEach superclass exists at the top of a Aierarchical relationship with its subclasses
EJA superclass may have several/ direct subclasses which inherit its features
EJA subclass fo one superclass may be a superclass fo other subclasses

10[J) “*Has a ..." vs.“Isa ...”
ElThese two phrases that express the nature of refationships and class attributes
between superclasses and subclasses in inheritance:
— A class to its own attributes (“has a”)
— A subclass to the superclass from which it inherits additional attributes (“is a")

11(J] “Has a ...” Relationships
§"Has a” relationship expresses the attributes (instance variables) within the class
(called composition)
EJA class "has a(n)” attribute, i.e.
—HourlySalaryCheck “has an” HoursWorked, “has a” Pay Rate

Page 1

CST141--Inheritance

— CommunityMember “has a” First Name, “has a” Last Name, “has an” Address, etc.

12(J] “Is a ...” Relationships
E"Is a” relationship expresses inheritance
E)Subclass "is a” superclass, i.e.
— AnnualSalaryCheck “is a” PayrollCheck
¢ And has all the attributes of a PayrollCheck, i.e. if PayrollCheck “has a” Check
Number attribute, AnnualSalaryCheck does also
—Teacher “is a” Faculty
¢ And has all the attributes of a Faculty member, i.e. if Faculty “has a” Rank
attribute, Teacher does also

13(0] Class Libraries (Page 1)
EINew classes inherit features from an organization's own class library
EIWhen developing a new class:
—First try to find a place for it in the existing inheritance hierarchy

—Only if it does not fit into the current class library structure should it be the
beginning of a new inheritance hierarchy segment

14| Class Libraries (Page 2)
E)Java API uses inheritance to build its vast library collection of classes
23[1] The Keyword extends (Page 1)

ElDeclares that this class is a direct subclass of the superclass that is named following
the keyword extends

E)The class inherits all public and protected members (instance variables and methods)
of the superclass

A class may extend (inherit) directly only from one class (its direct superclass)

24/l] The Keyword extends (Page 2)
gFormat:
public class SubClassName extends DirectSuperClassName {
ElExamples:

public class HourlySalaryCheck extends PayrollCheck {
public class Faculty extends Employee {

25/1] Superclass Constructor Call (Page 1)
EISubclass constructors always must contain a call to “super” (to its direct superclass
constructor method), or ...
EIf none is written, the compiler inserts one (an /implicit cal/ without parameters)
—Works only if superclass has a constructor without parameters

26|l] Superclass Constructor Call (Page 2)
EMust be the first statement in the body of the subclass constructor
ElExample:
public AnnualSalaryCheck(int checkNumber, int employeelD, double annualSalary)
{
super(checkNumber, employeelD);
setAnnualSalary(annualSalary);

}

Page 2

CST141--Inheritance Page 3

27|0) Calling Superclass Methods

EThe public members of a superclass are callable from the subclass

gFormat:
[super.]superclassMethodparameters)
—Keyword super is not required (and is not standard usage) unless overriding

superclass methods

ElExamples:
super.toString()
super.getEmployeelD;
getEmployeelD;

28(l] Method Overriding (Page 1)
ElTo modify the implementation of an inherited method in a subclass
ElExample:
public String toString()
{
return super.toString()
+ "\nHours worked: " + getHoursWorked()
+ "\nPay rate: " + getPayRate()
+ "\nGross pay: " + getGrossPay();
b

29|J) Method Overriding (Page 2)
EJSuperclass method must be public (accessible)
— A private superclass method cannot be overridden
EMethods that are static can be inherited but not overridden
—To access a “hidden” (because a method of the same name exists in the subclass)
static method in a superclass, use the class name, e.g.
SuperclassName. staticMethodName()

30(J] The @Override Annotation
EJPlacing @Override before a subclass method denotes that the method must override
the method in the superclass
gFormat:
@OQverrides
public type subclassMethodName()
{..
ElExample:
@Overrides
public String toString()
{..

37[J] The DecimalFormat Class (Page 1)
E)Class used to create objects used to format numbers for output
gIStored in the java.text package
import java.text.DecimalFormat;
gFormat:
DecimalFormat objectName = new DecimalFormat(" formatString");

CST141--Inheritance Page 4

— formatString arg'ument is a String of characters that specify how numbers will be
formatted

38(J] The DecimalFormat Class (Page 2)
ElExample 1:
DecimalFormat commaFormat = new DecimalFormat("#,##0");
EThe String argument "#,##0" specifies that the number will display:
—With commas at the thousands, millions, etc.
«Only if number is 1000 or greater; otherwise printing of leading zeros and
commas are from the 10’s position to the left are suppressed
—Rounded to the nearest integer

39(J| The DecimalFormat Class (Page 3)
ElExample 2:
DecimalFormat twoDecimals = new DecimalFormat("0.00");
E)The String argument "0.00" specifies that the number will display:
— At least one digit to the left of the decimal point
— Exactly two digits (rounded) to the right of the decimal point

40[J] The DecimalFormat Class (Page 4)
E)The functionality of Examples 1 and 2 can be combined to add commasto the two
decimals rounded:
DecimalFormat grossPayFormat = new DecimalFormat("#,##0.00");
EIA floating dollar sign could be inserted prior to the rest of the format string:
DecimalFormat grossPayFormat = new DecimalFormat("$#,##0.00");

41| The format Method
ElFormats a numeric value according to the DecimalFormat object's format string
ETakes one variable/value (either float or double) as its sing/e argument
gFormat:
decimalFormatObject.format(float] double);
ElExample:
JOptionPane.showMessageDialog(null, grossPayFormat.format(grossPay));

52|J) Extendible Classes (Page 1)

E)Software is extendible when it can be easily updated and reusedto do something that
the original author never imagined

gExtendibility is enhanced by:
— Loose coupling—few connections
— (lass cohesion —classes with one single, well defined entity
— Responsibility-driven design in which classes are responsible for manipulating their

own data

53[] Extendible Classes (Page 2)
ElWhen developing a new class, look to find a place where it can extend another class
in the existing inheritance hierarchy
gSometime superclasses in an inheritance hierarchy only serve to support subclasses

—Such superclasses are called abstract classes (never have objects instantiated from
them)

CST141--Inheritance

73| The Class Object (Page 1)

E)The superclass of all c/asses (either direct or indirect) is Object from the Java API ..

—If a class definition does not explicitly extend another class, it extends Object
directly

EThe following two class headers effectively are identical:
public class PayrollCheck {

public class PayrollCheck extends Object

{

74| The Class Object (Page 2)

EJAs a result all classes inherit eleven (11) public methods from Object including:
—toString(), equals() and hashCode()

EJAdditionally classes from the Java API use inheritance extensively and extend also
from class Object (directly or indirectly)

77|] The toString() Method of Class Object

ElMethod toString() is a member of class Object that returns a String representation of
an object

EJAll classes inherit the toString() method either directly or indirectly from Object
—May be called or overridden

EJReturns the class name of which the object is an instance and a hash code (start
address where the object is stored in memory in hexadecimal), e.g.
—HourlySalaryCheck@15037e5

79/] Advantages of Inheritance (so far)
gAvoiding code duplication
ElCode reuse
gJEasier maintenance
EJExtendibility

80[J] Subtyping (Page 1)
ETypes defined by a subclass definition actually are subtypes of their superclass

E)If HourlySalaryCheck and AnnualSalaryCheck classes are extensions of class
PayrollCheck:

—The superclass object:
PayrollCheck pay;

—Can be instantiated by calling its subtype constructor:
pay = new AnnualSalaryCheck();
—Or in a single statement:

PayrollCheck pay = new AnnualSalaryCheck();

81/J] Subtyping (Page 2)

EINow the subtyped object can differentiate between getGrossPay() methods of
HourlySalaryCheck and AnnualSalaryCheck classes when called:

JOptionPane.showMessageDialog(null, pay.getGrossPay());
—This is an example of polymorphism (meaning “many shapes” or “many forms”)

—In this case the method behavior changes based upon which constructor was used
to instantiate it

Page 5

CST141--Inheritance Page 6

84(J] The ArrayList Class (Page 1)
EJUsed to create a list of items in a flexible-sized collection

EThe capacity of an ArrayList object is initialized to start at ten (10) elements but
grows as items are added to it

85[J] The ArrayList Class (Page 2)
EThe class has a whole series of methods of its own which can be used to
automatically manipulate objects instantiated from it
ElFound in the java.util package of the Java API library:
import java.util.ArrayList;

86| The ArrayList Class (Page 3)

EJFormat to declare an ArrayList object:
ArrayList< type> objectName;

ElExample:
private ArrayList<String> departmentList;
— ArrayList is a generic class requiring a subtype specified as a parameter
—Enclosed in <chevrons>, e.g. <angle brackets>
—The example data field above departmentList is called an “ArrayList of Strings

87(0| Instantiating ArrayList Objects (Page 1)
EJSimilar syntax to that which is used when instantiating objects ...
—Includes the second type parameter enclosed in <chevrons>
gFormat:
objectName = new Arraylist< type>();
EJExample:
departmentList = new ArrayList<String>();

ss[J] Instantiating ArrayList Objects (Page 2)
EJFormat to declare and instantiate the object in a single statement:
ArrayList< type> objectName = new ArrayList< type>();
ElExample:
ArrayList<String> departmentList = new ArrayList<String>();

89[d| The add() Method for ArrayList
E)Appends this element (object) to the end of the ArrayList collection
EIFormat:
arraylListObject.add(object);
—The object represents the value added as a new element to the ArrayList collection
ElExample:
departmentList.add("COMPUTER");

90(J] The size() Method for ArrayList
ElReturns an int which is the number of elements in the ArrayList collection
gIFormat:
arraylistObject.size()
ElExample:
JOptionPane.showMessageDialog(null, departmentList.size());

14

CST141--Inheritance Page 7

91(] The get() Method for ArrayList
E) Retrieves an individual element from the specified position in ArrayList collection
gIFormat:
arraylistObject.get(index)
—The jndex is an int between zero (0) and one less than the number of items in the
ArrayList
EJExample:
JOptionPane.showMessageDialog(null, departmentList.get(index));
—The element is not removed from the collection

92(d| The indexOf() Method for ArrayList (Page 1)
EJ)Searches for first occurrence of the object argument in the ArrayList collection—tests
for an equal to (==) condition
§The method returns either :
—An int which is the index representing its position in the ArrayList collection
—Or -1 if the search criteria value is not found

93[J] The indexOf() Method for ArrayList (Page 2)
gFormat:
arrayListObject.indexOf(object)
EJExample:
index = departmentList.indexOf("COMPUTER");

94(J] The remove() Method for ArrayList (Page 1)
E) Deletes an individual element from the specified position in ArrayList collection
EJAll elements after the deleted item move up one element to fill the gap

95[J] The remove() Method for ArrayList (Page 2)
gFormat:
arrayListObject.remove(/ndex);
EThe indexis an integer between zero (0) and one less than the number of elements
in the ArrayList
ElExample:
departmentList.remove(index);

