CST141—O0bject-Oriented Thinking Page 1

1 Object-Oriented Thinking
CST141

2 Interface vs. Implementation (Page 1)
* The interface (the class documentation) consists of:
— The name of the class and general description

— A list of constructors and methods, as well as a description of the purpose of each
constructor and method

— The return values and parameters for constructors and methods
— The constants and any other public fields

3 Interface vs. Implementation (Page 2)
 The interface does not include the class implementation:
— The private data fields

— Any public constructors and methods including the bodies (source code) for each
method

4 Documentation
* "Document everything”
» Write your comments first
— Before you write the method

—If you do not know what to write, you probably do not understand fully what the
method is supposed to do

5 Writing Class Documentation
* Your own classes can be documented the same way as are Java API library classes
— Use your classes to create an interface, e.g. "library class”

+ Others should be able to use your classes by reading the interface (documentation)
without access to the implementation

6 Elements of Documentation (Page 1)
» Documentation for a class should include:
— The class name (and inheritance hierarchy)
— A comment describing the overall purpose, function, and characteristics of the class
— A version number
— The name of the author or authors

7 Elements of Documentation (Page 2)
« Documentation for methods (including constructors) and public fields (frequently
constants) should include:

— The method name (including constructors) or field name, as well as a comment
describing the purpose and function of each

— The parameter names and types, including a description
—The return type, including a description

CST141—O0bject-Oriented Thinking Page 2

8 The Javadoc Utility (Page 1)
+ Javadoc.exe is a standard, convenient tool to document Java code (part of Java JDK)
+ Creates HTML files (web pages) that provide the ease of hyperlinks:
— From one document to another ...
— As well as within each document

9 The Javadoc Utility (Page 2)
* Requires special formatting of comments

» The Javadoc utility reads the formatted comments, and automatically generates the
HTML document based on those comments

10 The Javadoc Utility (Page 3)
* The two kinds of Javadoc comments:
— Class-level comments—provides overall description of the classes

— Member-level comments—describes the purpose(s) of the members (e.g. usually the
methods and pubilic fields)

* Both types of comments always start with the characters /** and end with */

11 Class-Level Comments (Page 1)
* Class-level comments provide an overall description of the class
* Placed just above class header
— May not be followed by any other elements before the class header (e.g. import)
* Generally contain author and version number tags, and a description of the class

12 Class-Level Comments (Page 2)
* Example class-level comment:
e
* The Payee class calculates payroll
* for regular and overtime workers.
* Users update data fields by calling
* the setHoursWorked() and setPayRate()
* methods.
*
* @author Prof. Carl B. Struck
* @version 1.0
*/
public class Payee

{

13 Tags
+ Tags are formatting elements that start with ampersand (@) character and are
formatted in the documentation by Javadoc.exe utility
* The @author tag describes the author(s)
@author Carl B. Struck

CST141—O0bject-Oriented Thinking Page 3

+ The @version tag describes the version number or similar information
@version 1.0

15 Member-Level Comments (Page 1)

* Member-level comments describe the public fields, methods, and constructors
* Placed directly above each field and/or method header

16 Member-Level Comments (Page 2)
* Member-level tags may include:
—The @param tag which describes each of the method'’s required parameters
—The @return tag describes the return value of a non-void method

—The @throws tag describes exceptions which the method potentially throws
(Chapter 14)

17 Member-Level Comments (Page 3)
+ The @param tag describes each of the method'’s required parameters

— There may be more than one @param for a method if it takes more than one
parameter

— First word always is the parameter variable name and it will be followed by a hyphen
(-) in the generated documentation

— Example:
@param hoursWorked the employee number of hours worked

18 Member-Level Comments (Page 4)

* Member-level comment with a @param tag:
e
* Mutator method for the hours worked
* data field. Validates that hours
* worked is between 0.25 and 60.0.

*

* @param hoursWorked the employee number

* of hours worked

*/
public void setHoursWorked(double hoursWorked)
{

20 Member-Level Comments (Page 5)

* The @return tag describes the return value of a non-void method
* Example:
@return Employee number of hours worked as a double

21 Member-Level Comments (Page 6)

+ A member-level comment with a @return tag:
/**
* Accessor method for the hours worked

CST141—O0bject-Oriented Thinking

28

29

30

32

31

33

* data field.

*

* @return Employee number of hours

* worked as a double
*/
public double getHoursWorked()
{
Encapsulation (Page 1)

+ Encapsulation is achieved by making instance variables private
— Also called “information hiding”
—Only what a class can do should be visible to the outside, not how it does it

Encapsulation (Page 2)
» Through a public interface the private data can be used by the client class without
corrupting that data
— Only the class’ own methods may directly inspect or manipulate its data fields
— Protects data from the client but still allows the client to access the data
— Makes the class easier to maintain since the functionality is managed in just one
place

Encapsulation (Page 3)
 Encapsulation is achieved by:
— Making data fields (instance and static variables) private, and ...

— Having public accessor and mutator methods that give access to the data fields (of
which the client does not know how they function)

Instance vs. Static (Page 2)

 Avariable or method that is dependent on a specific instance of the class should be an
instance variable or method
— The opposite of static

Instance vs. Static (Page 1)
+ Avariable that is shared (one RAM location) by all instances of a class should be static
— Static variables usually should be handled by static methods
— Reference static members with the class name, e.g.
JOptionPane.showMessageDialog()
— Do not pass parameters for static variables to constructors which always are used to
create an instance; rather include a static set method

The JOptionPane Class (Page 1)

+ Class from the Java API library providing simple to use popup dialogs to prompt users
for a value or to display information
+ A member of the javax.swing class:

Page 4

CST141—O0bject-Oriented Thinking

34

35

36

37

38

39

40

—import javax.swing.JOptionPane;

The JOptionPane Class (Page 2)
+ JOptionPane class can seem complex, but most methods are one-line calls to one of
the four (4) static showXxxDialog methods
» Two of the methods are:
— showlnputDialog—prompts for some input
— showMessageDialog—a message that tells the user about something that has
happened

The JOptionPane Class (Page 3)

* These two methods showlnputDialog and showMessageDialog are static:
public static void showMessageDialog(Component parent, Object message)

* The syntax to call these methods uses the class name, not an object name), e.g.
JOptionPane.showMessageDialog(null, pay1.toString());

The JOptionPane Class (Page 4)

O JOptionPane method calls pause program execution (blocks the caller until the user’s
interaction is complete)

* The Java APl documentation for the class JOptionPane is located on-line at:
— http://docs.oracle.com/javase/7/docs/api/javax/swing/JOptionPane.html

The showMessageDialog() Method (Page 1)
+ Displays output in a message dialog window

* The showMessageDialog is a method of the predefined JOptionPane class contained
in the Java API library

+ Alternative to println method which instead allows GUI (graphical user interface)
output

The showMessageDialog() Method (Page 2)
+ Takes two required parameters:
— The first is the keyword null
—The second is the output message (String, etc.)
* Format:
JOptionPane.showMessageDialog(null,
message);
* Example:

JOptionPane.showMessageDialog(null, pay1.toString());

The showInputDialog() Method (Page 1)

+ Accepts a String typed input from users in a textbox within the dialog window
* The showlnputDialog is a member of the JOptionPane class

+ Alternative to Scanner object which instead allows for GUI input

The showlInputDialog() Method (Page 2)

+ The only required argument is a message

Page 5

CST141—O0bject-Oriented Thinking Page 6

41

42

43

44

45

46

— A prompt that tells the user what value should be keyed into the textbox
* The return value of the method is a String that is usually assigned to a variable

The showlInputDialog() Method (Page 3)
* Format:

JOptionPane.showlnputDialog(message);
* Example:

String input = JOptionPane.showlnputDialog("Enter hours worked");

Wrapper Classes (Page 1)

* Primitive types (byte, short, int, long, float, double, boolean and char) are not objects
* Wrapper classes, which allow primitives to be treated like objects, exist for every
primitive:
— Byte, Short, Integer, Long, Float, Double, Boolean and Character
+ Located in the java.lang package so they do not need to be imported

Wrapper Classes (Page 2)
« All Java wrapper classes (except Character) have parse methods that can convert String
format of a number to numeric value:
Byte.parseByte(string)
Short.parseShort(string)
Integer.parselnt(string)
Long.parseLong(string)
Float.parseFloat(string)
Double.parseDouble(string)
Boolean.parseBoolean(string)

The Double.parseDouble Method

* A method from wrapper class Double that converts String values to double type
— May be necessary when an input method returns a String

* Format:
double.parseDouble(String)
* Example:

double hoursWorked = Double.parseDouble(stringHours);

The Integer.parseint Method
* A method from wrapper class Integer that converts String values to int type
— May be necessary when an input method (e.g. showlnputDialog()) returns a String
* Format:
Integer.parselnt(string)
* Example:
int age = Integer.parselnt(stringAge);

Return Values as Arguments to Another Method (Page 1)
* When the return value (result) of one method will serve as an argument to the next

CST141—O0bject-Oriented Thinking

47

60

61

62

63

method ...
+ Rather than storing the return value in a separate variable ...

« A common Java programmer practice is to insert the entire the first method call into
the argument parentheses of the second method

Return Values as Arguments to Another Method (Page 2)
* Instead of:
String stringHours =
JOptionPane.showlnputDialog
("Enter hours worked");

double hoursWorked = Double.parseDouble(stringHours);
* Rather:
double hoursWorked = Double.parseDouble(
JOptionPane.showlnputDialog(
"Enter hours worked"));

char and String Variables
* A charis a Java data type (a primitive numeric) that uses two bytes (16 bits) to store
one text character ...
— char literals enclosed in single quotes
— E.g char anyLetter = 'L’;
+ A String (object or reference) is a series of characters treated as a unit ...
— String literals enclosed in double quotes
—E.g String firstName = "Charles";

Character Representation

+ All characters (whether in a char or a String) are represented as a binary integer value
between zero (0) and 65,535

+ Requires two bytes (16 bits) of storage in RAM or on a disk ...
—The highest 76 digit binary numberis 11111111 11111111 or 65,535

 The integer storage values are know as Unicode (formerly ANSI—one byte)

The Unicode Table
+ Complete Unicode specification is found at:
— http://www.ssec.wisc.edu/~tomw/java/unicode.html
—The letter "A" is:
* 65 in decimal
+ 0000 0000 0100 0001 in Unicode binary
—The letter "a" is:

97 in decimal
+ 0000 0000 0110 0001 in Unicode binary

The String Class (Page 1)

CST141—O0bject-Oriented Thinking Page 8

64

65

66

67

68

69

70

« String variables are reference variables (objects of the String class) ...
— "Points to” multiple locations in RAM
+ The String class is located in the java.lang package so it does not need to be imported

The String Class (Page 2)

+ Additionally String objects contain a series of methods used for manipulating them ...
— Java methods for processing strings include techniques for finding/comparing
characters, extracting substrings, modifying upper/lower case, and many other
methods

Instantiating Strings (Page 1)
+ Java Strings may be declared using the same format as primitive variables (declares an
un-instantiated object):
- Format:
String stringVariable;

Instantiating Strings (Page 2)
+ Or a string may be instantiated formally using object-oriented notation with a
constructor call:
— Format:
String stringObject = new String();

Instantiating Strings (Page 3)
* There are thirteen (13) constructor methods for instantiating String objects
+ Example with no arguments:

String middleName = new String();

Instantiating Strings (Page 4)
» Examples with String (either String constant or String variable) arguments:
String lastName = new String("Jenson");
— Equivalent of: String lastName = "Jenson";
String lastName = new String(s1);
— Equivalent of: String lastName = s1;

+ Other String constructors accept char arrays, byte arrays, StringBuffers and
StringBuilders

The Scanner Class (Page 1)

+ A simple text scanner which is able to parse primitive types (int, double, boolean, etc.)
and strings using regular expressions

* When the variable System.in (the “standard input stream”) is passed to the constructor,
reads text from the console, e.g the keyboard

* Found in the java.util package
import java.util.Scanner;

The Scanner Class (Page 2)

¢ Format:

CST141—O0bject-Oriented Thinking Page 9

71

72

73

74

76

Scanner scannerObject = new Scanner(inputStream);

* Example:
Scanner reader = new Scanner(System.in);

The System.in Variable

* The variable (field) “in” is a member of class System and is defined as the “standard
input stream”

* Typically corresponds to keyboard input from the terminal (or sometimes another
input source specified by the host environment or user)

* This stream is already open and ready to supply input data

The nextLine() Method
» A member of class Scanner that reads the next characters from the input device up to
a carriage return as type String
—Input device is the terminal keyboard if input stream for the Scanner object is
System.in
* Format:
scannerObject.nextLine()
* Example:
String gender = reader.nextLine();

The nextint() Method
* A member of class Scanner that reads and parses next characters from the input
device up to a carriage return as type int
—Input device is the terminal keyboard if input stream for the Scanner object is
System.in
* Format:
scannerObject.nextInt()
* Example:
int inputAge = reader.nextint();

The nextDouble() Method
+ A member of class Scanner that reads and parses next characters from the input
device up to a carriage return as type double
—Input device is the terminal keyboard if input stream for the Scanner object is
System.in
* Format:
scannerObject.nextDouble()
* Example:
double inputHours = reader.nextDouble();

Immutable Strings (Page 1)

+ All object variables “reference” the object—the variable actually stores the RAM
address where the object is located

+ Strings are immutable objects—their contents cannot be changed after they are

CST141—O0bject-Oriented Thinking Page 10

77

78

79

80

81

instantiated

Immutable Strings (Page 2)

* When a string variable is updated, the variable references a new address where the
new value is stored
— The old string still is in RAM memory but can no longer be accessed

Methods of the String Class
+ Used to perform manipulations with or upon a string or string variable
* Formats:
stringVariable.method([arg1, arg2, ...])
"string".method([arg1, arg2, ...])
+ Some examples:
int stringLength = s1.length();

if (s1.equals("Java")) ...
int indexLocation = "hello".indexOf(s5);

String subStr1 = s1.substring(12);

The equals() and equalsignoreCase() Methods (Page 1)

» Two boolean methods of class String that compare their string objects to another
string to see if they are identical
— Returns value either true or false

* The equals() method is case sensitive
—E.g. "H" does not equal "h"

+ The equalslgnoreCase() method ignores the upper/lower case of the letters compared,
e.g. "H" does equal "h"

The equals() and equalsignoreCase() Methods (Page 2)
* Formats:
stringObject.equals(String)
stringObject.equalslgnoreCase(String)

— The String argument is the "string" or stringVariable to which the stringObject is
compared
* Examples:

if (s1.equals("Java")) ...
— Equivalent but invalid. if (s1 == "Java")
if (s2.equalslgnoreCase(s3)) ...

The equals() and equalsignoreCase() Methods (Page 3)

* Why is it not possible to just use the "is equal to” operator (==) with Strings?

« String is a class and so Strings are objects

* When used with two objects the “is equal to” operator asks if the two objects are
identical, that is do they share the same address in memory

* The following (compares addresses) really means “are these two objects the same
String?":

CST141—O0bject-Oriented Thinking Page 11

if (s1 == "Java")

82 String Comparison Processing
» Made character by character, from left to right, in accordance with the computer's
collating sequence
— Unicode (ANSI, ASCIl) , EBCDIC or some other code
 The binary value of the leftmost character of one factor is compared to the binary
value of the leftmost character of the other
« If they are equal, the comparisons continue with each succeeding character position

83 String Comparison Examples
* Example 1:
—"java"
« Binary: 0110 1010 (106) / 0110 0001 (97) ...
- "jello"
* Binary: 0110 1010 (106) / 0110 0101 (101) ...
* Example 2:
- "hello"
« Binary: 0110 1000 (104) / 0110 0101 (101) ...
—"Hello"
« Binary: 0100 1000 (72) / 01100101 (101) ...

84 Escape Sequences
* Special character sequences within a string:
— Begin with a backslash (\) and ...
— Modify the format of printed output
+ Some common escape sequences:

-\n New line (carriage return and line feed)
-\t Tab

-\\ Backslash (to print \ character)

-\" Double quote (to print the " character)

—\unnnn A Unicode character as a hexadecimal value

86 The compareTo() and compareTolgnoreCase() Methods (Page 1)
* Methods of String class that compares the string object to another string to see if the
object is:
— Equal to string argument to which it is compared
— Greater or lesser than the string argument to which it is compared
* Method compareTo() is case sensitive; method compareTolgnoreCase() is not

87 The compareTo() and compareTolgnoreCase() Methods (Page 2)
* The return value is an int as follows:
— Zero (0) if the string object is equal to the “compare to” string argument
— A positive integer if the string object is greater than the "compare to” string

CST141—O0bject-Oriented Thinking Page 12

argument
— A negative integer if the string object is less than the “compare to” string argument

88 The compareTo() and compareTolgnoreCase() Methods (Page 3)
* Formats:
stringObject.compareTo(string)
stringObject.compareTolgnoreCase(string)

— The string argument is the "string" or stringVariable to which the stringObject is
compared

* Examples:

if (s1.compareTo("Java") > 0) ...
— Equivalent but invalid: if (s1 > "Java")
if (s2.compareTolgnoreCase(s3) < 0) ...

90 The length() Method

+ A method of the String class that returns an int which is the count of the number of
characters within a String

* Format:
stringObject.length()
— The length() method takes no arguments

* Examples:
int stringLength1 = s1.length();
int stringLength2 = "hello".length();
—The second example returns the integer 5

91 The charAt() Method (Page 1)
+ A method of class String that returns a char (one character) from a specific location
within the string and converts it to a char
* Format:
stringObject.charAt(index)

—index is an int which is the position within the stringObject from where the character
is returned

92 The charAt() Method (Page 2)
« Examples:
char letter1 = s1.charAt(7);
char letter2 = "hello".charAt(1);
—The second example returns the character ‘e’

+ Using the charAt() method with an index value of zero (0) is the most common way to
convert a String to a char, e.g.

string.charAt(0);
94 The substring() Method (Page 1)

* Returns a String which is the subset of characters from within a string beginning at
specified start location

CST141—O0bject-Oriented Thinking Page 13

—If an optional end location is designated, characters are returned only up to that
location; otherwise ...

— All characters to the end of the string object are returned
+ Although the characters are returned, the original string object is unchanged

95 The substring() Method (Page 2)
* Format:
stringObject.substring(beginindex[, endindex])

— beginindex is an int which is the location in stringObject where the subset of the
returned characters begins

— endIndex (optional) is an int which is the location where the subset of returned
characters ends (only those characters up to but not including it)

96 The substring() Method (Page 3)
* Examples:
String s2 = s1.substring(12);
— Returns all characters from index position 12 to end of string (the 13t character)
String s4 = s3.substring(12, 16);
— Returns all characters from index position 12 up to excluding index position 16

98 The toLowerCase() Method (Page 1)
* Returns a string with all the alphabetic characters in the string object converted to
lower case ...
— Effects only alphabetic characters

+ Although the lower case characters are returned, the original string object is
unchanged

99 The toLowerCase() Method (Page 2)
* Format:
stringObject.toLowerCase()
— There are no arguments to the method
* Example:
String s2 = s1.toLowerCase();
String s3 = "Hello".toLowerCase();
—Variable s3 will be assigned "hello"

100 The toUpperCase() Method (Page 1)

» Returns a string with all the alphabetic characters in the string object converted to
upper case

— Effects only alphabetic characters

+ Although the upper case characters are returned, the original string object is
unchanged

101 The toUpperCase() Method (Page 2)
* Format:

CST141—O0bject-Oriented Thinking

103

104

106

107

108

stringObject.toUpperCase()
— There are no arguments to the method

+ Example:
String s2 = s1.toUpperCase();
String s3 = "Hello".toUpperCase();
—Variable s3 will be assigned "HELLO"

The split() Method (Page 1)
* Splits a String object into tokens
— Tokens are a series of substrings or a collection of string objects (like an array)
» For example:
—In the string:
« “Tokens are sets of characters”
— The tokens are:

« "Tokens", "are”, "sets”, "of", “characters”
— Assuming that the blank space is the delimiter

The split() Method (Page 2)
* Format:
stringObject.split(regEx)
—regex is a regular expression—the string which is the delimiter (separator) between
the tokens
* Example:
String[] t1 = s1.split(" ");

The StringBuilder Class (Page 1)

* A class that provides functionality for building and concatenating strings into a single
string

+ StringBuilder class is located in the java.lang package (does not need to be imported)

The StringBuilder Class (Page 2)
+ The primary methods of class StringBuilder are:

— append—concatenates string (or some other type converted to String) to the end of
the StringBuilder object

— insert—inserts string (or some other data type converted to String) within the
StringBuilder object

The StringBuilder Constructor (Page 1)

* There are four constructors including:
StringBuilder stringBuilderObject = new StringBuilder();
— Creates a string builder object with a capacity of 16 elements (initially empty)
StringBuilder stringBuilderObject = new StringBuilder(initialCapacity);

— Creates an empty string builder with a capacity specified by the int parameter
initialCapacity

Page 14

CST141—O0bject-Oriented Thinking

109

110

111

112

113

115

The StringBuilder Constructor (Page 2)
* There are four constructors including (con.):
StringBuilder stringBuilderObject = new StringBuilder(stringObject);

— Creates a string builder of the initial value of the specified stringObject plus 16
additional empty elements

The length() Method
+ Like the String class, class StringBuilder has a length() method
* Returns an int which is the number of characters in the builder
* Format:

stringBuilderObject.length()

The capacity() Method

* The capacity, which is an int returned by the capacity() method, is always greater than
(usually) or equal to the length

+ Automatically expands as necessary to accommodate additions to the string builder

* Format:
stringBuilderObject.capacity()

The append() Method (Page 1)
+ StringBuilder method that concatenates its argument to the end of string builder
object
* The data is converted to a string before the append operation takes place
— Therefore the argument type may be String or any of the following:
* boolean, char, char[] (array), float, double, short, int, long, or Object

The append() Method (Page 2)
* Format:
stringBuilderObject.append(argument);
* Examples:
output.append("The charis " + c1);
——Oor—
output.append("The char is ");
output.append(c1);

The delete() Method
+ StringBuilder method that deletes subsequence from start to end - 1 (inclusive) in the
string builder's char sequence
* Format:
stringBuilderObject.delete(start, end);
* Example:
output.delete(12, output.length());
— This example deletes from the 13t char to the end of the string builder object

Page 15

CST141—O0bject-Oriented Thinking

116

117

118

119

120

121

The deleteCharAt() Method
+ StringBuilder method that deletes the char located at index in string builder object
* Format:
stringBuilderObject.deleteCharAt(index);
* Example:
output.deleteCharAt(0);
— This example deletes the 15t char of the string builder object

The insert() Method (Page 1)

+ StringBuilder method of that inserts the second argument into string builder object

* The first int argument indicates the index before which the data is to be inserted

+ Like append(), the data is converted to a string before the insert operation takes place

— Therefore the argument type may be String, but also may be boolean, char, char(]
(char array), float, double, short, int, long, or Object

The insert() Method (Page 2)
* Format:

stringBuilderObject.insert(index, object);

— The object could be a primitive (int, double, char, etc.), a String or any other object
* Example:

output.insert(6, "Hello");

— This example inserts the string “Hello” before the 7th character of the string builder
object

The replace() Method
« StringBuilder method that replaces the specified characters in string builder object
* Format:
stringBuilderObject.replace(start, end, stringObject);
* Example:
output.replace(2, 4, "Hello");
— This example replaces the 3" through the 5t char’s of the string builder object with
the string "Hello”
The reverse() Method
+ StringBuilder method that reverses sequence of characters in the string builder object
* Format:
stringBuilderObject.reverse();

The setCharAt() Method
+ StringBuilder method that replaces a single character in the string builder object
* Format:
stringBuilderObject.setCharAt(index, char);
* Example:
output.setCharAt(8, 'G");

Page 16

CST141—O0bject-Oriented Thinking Page 17

—This example replaces the 9t char of the string builder object with the character 'G'
122 The toString() Method (Page 1)

« StringBuilder has a toString() method that overrides that of Object and returns a string
representation of the object

— Effectively the character sequence within the string builder object

123 The toString() Method (Page 2)

* Format:
stringBuilderObject.toString()

* Examples:
String s2 = output.toString();
— Return type of method is String
System.out.printIn(output.toString());
JOptionPane.showMessageDialog(null, output);

124 The StringBuffer Class

* The StringBuffer class is similar to StringBuilder and often the two can be used
interchangeably

— The methods of both allow strings and other characters to be added, inserted
and/or appended into their objects

* Use StringBuffer if the object might be accessed by multiple tasks concurrently;
otherwise use StringBuilder

