
Java: Recursion Page 1

Recursion

CST141

Recursion

• Earlier programs in CST141 have been structured as methods that call one another in a

disciplined, hierarchical manner

• Recursive methods call themselves

• Called directly or indirectly through another method

• Useful and often can be a more intuitive alternative to iteration/repetition

Recursion Concepts (Page 1)

• There are two parts to recursion:

• Base case—the recursive method is capable of directly solving only this simplest case

• If the problem is easy, solve it immediately, e.g. “Are we done yet?”

• When the method is called that contains the base case (e.g. the simple problem),

the method returns the result (the piece it knows how to do)

Recursion Concepts (Page 2)

• There are two parts to recursion: (con.)

• Recursive call/recursion step—resembles the original problem, but is a slightly more

complex or larger version of it

• Normally within a return statement, the method calls a fresh copy of itself to work

on the “slighty” smaller problem

Recursion Concepts (Page 3)

• With each new recursive call to itself, the problem gets smaller and smaller until it

“converges” on the base problem

Recursion Example: Breaking Rock into Dust

• Using the two parts of recursion:

• Recursive call/recursion step—if the problem cannot be solved immediately, divide it

into smaller problems; then solve the smaller problem

• To destroy rock, hit it with the hammer so that it shatters into smaller pieces

• Apply the same procedure to the pieces

• Base problem—if the problem is easy, solve it immediately

• When a piece is small enough, stop hitting it

Recursion Example: Factorials

• Factorial of n, or n! is the product of:

• n · (n – 1) · (n – 2) · … · 1

• For example: 4! = 4 × 3 × 2 × 1 = 24

• By definition 1! = 1 and 0! = 1

• The recursive solution uses the algorithmic relationship:

n! = n · (n – 1)!

2! = 2 · (2 – 1)! = 2

3! = 3 · (3 – 1)! = 6

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

2

3

4

5

6

7

Java: Recursion Page 2

2! = 2 · (2 – 1)! = 2

3! = 3 · (3 – 1)! = 6

4! = 4 · (4 – 1)! = 24

5! = 5 · (5 – 1)! =

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

• Factorial.java

Recursion vs. Iteration (Page 1)

• Any problem that can be solved recursively can be solved iteratively

• Both iteration and recursion use a control statement

• Iteration uses a repetition statement (for or while)

• Recursion uses a selection statement (if…else)

Recursion vs. Iteration (Page 2)

• Iteration and recursion both involve the use of a termination test

• Iteration terminates when the loop-continuation condition fails

• Recursion terminates when a base case is reached

• Recursion may be more “expensive” in terms of processor time and memory space, but

usually provides a more intuitive solution

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

10

11

}

Recursion Advantages

• Main advantage is that recursion can be used to create clearer, simpler versions of

several algorithms

• As opposed to alternative algorithms using an iterative (looping) solution

• A recursive approach may be implemented with fewer lines of code

• Select recursive approach when iterative one might not be apparent

Recursion Disadvantages (Page 1)

• Recursive applications may execute a bit more slowly than their iterative equivalent

• Added overhead of the additional method calls (may use more memory and CPU

time)

• Avoid using recursion in situations requiring high performance

Recursion Disadvantages (Page 2)

• Many recursive calls to a method could cause a stack overrun

• Due to extra storage for parameters and local variables (stack could become

exhausted)

• If this occurs, the Java run-time system will throw an exception

• Not usually a concern for standard problems

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

19

20

21

}

Recursive Methods and the Stack (Page 1)

• The method call stack is used to keep track of method calls as well as local variables

(including parameters) within a method call

• When a method calls itself, new local variables are allocated storage on the stack (plus a

pointer to the address of the method call)

• The recursive call does not make a new copy of the method; only the local variables

are new

Recursive Methods and the Stack (Page 2)

• As the recursive method executes return, its local variables are removed from the stack

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

31

32

Java: Recursion Page 3

Recursive Methods and the Stack (Page 2)

• As the recursive method executes return, its local variables are removed from the stack

• Previous recursive calls resume executing at the point of the call inside the method

and retrieve the copy of its local variables

• Variables of current method executing are always at “top of stack”

• Recursive method calls often said to be “telescoping” out and back

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

32

Fibonacci Numbers (Page 1)

• In mathematics the Fibonacci numbers are a series numbers in the following integer

sequence called the Fibonacci sequence

• They are characterized by the fact that every number after the first two is the sum of the

two preceding ones, e.g.

• 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …

Fibonacci Numbers (Page 2)

• Often, especially in modern useage, the sequence is extended by one more initial turn,

e.g.

• 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …

• Depending on the chosen starting point, by definition the first two numbers are either:

• 1 and 1

• 0 and 1

• Each subsequent number is the sum of the previous two

Fibonacci Numbers (Page 3)

• Sequence Fn of Fibonacci numbers is defined by recurrence relation:

• Fn = Fn-1 + Fn-2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

33

34

35

36

• Fibonacci.java

Recursive Backtracking

• Recursive backtracking is the process of returning to an earlier decision point using

recursion

• If one set of recursive calls does not result in a solution, program backs up to previous

decision point and makes different decision

• Often results in another set of recursive calls

The Tower of Hanoi

• The “Tower of Hanoi” puzzle can be solved with recursive backtracking

• https://www.youtube.com/watch?v=buWXDMbY3Ww

• (Start at 5 minutes)

•

The Tower of Hanoi Algorithm

• The method call:

moveDisks(n – 1, fromTower, auxTower, toTower)

• The algorithm for the method:

if (n == 1)

Move disk 'n' from the fromTower to the toTower

else

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

38

39

40

Java: Recursion Page 4

Move disk 'n' from the fromTower to the toTower

else

{

moveDisks(n – 1, fromTower, toTower, auxTower)

Move disk 'n' from the fromTower to the toTower

moveDisks(n – 1, auxTower, fromTower, toTower)

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

• TowerOfHanoi.java

Merge Sort (Page 1)

• The process of sorting an array involves putting it into sequence, either ascending or

descending

• The merge sort is an efficient sorting algorithm that conceptually is more complex than

selection sort and insertion sorts

• Sorts an array by splitting it into two equal-sized sub-arrays, sorting each sub-array,

then merging them into one larger array

Merge Sort (Page 2)

• The implementation of the merge sort in this example is recursive

• The base case is an array with one element (which of course is sorted already), so the

merge sort immediately returns in this case

• Recursion step splits array into two approximately equal pieces, recursively sorts

them, then merges the two sorted arrays into one larger, sorted array

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

43

44

