CST141—GUI Basics

1 Java GUI Basics
CST141

2 Console vs. Window Programs
* In Java there is no distinction between console programs and window programs
—Java applications can mix (combine) console and window elements

"

— Lower case “w" above indicates that windows are not unique to Microsoft, e.g.
Linux and Mac (remember that Java is transportable)
* The Java Virtual Machine (JVM) always has a command window (console) running

3 Java “Swing” GUI Components
* Windows-type controls with which users interact by using the mouse or keyboard
+ Some basic GUI component classes are:
— JLabel—a text element that is not editable
— JTextField—an input textbox
— JButton—command button that triggers an event when clicked
— JCheckBox—clicked "on” and "off"
— JComboBox—drop-down list of choices
— JList—open area with list of choices (scrollable)

4 The JFrame Class (Page 1)
+ Defines a window object with Title bar, and Minimize, Maximize and Close buttons
+ Any class that extends super class JFrame may contain GUI components

+ JFrame extends Frame extends Window extends Container extends Component
extends Object

* Located in the javax.swing package:
import javax.swing.JFrame;

5 The JFrame Class (Page 2)
* Format to call the overloaded constructor that instantiates a JFrame object:
JFrame jFrameObject = new JFrame("Titlebar Text");
—The "Titlebar Text" is the text that appears in the title bar of the window
* Example:
JFrame frame = new JFrame("JFrame Demo");

6 The JFrame Class (Page 3)

* The class that extends JFrame "is a” JFrame and can call all its methods, e.g.
public class FlowLayoutDemo extends JFrame
{

FlowLayoutDemo()

{
add(new JLabel("A label"));

Page 1

CST141—GUI Basics

10

11

12

The JTextField Class (Page 1)
+ Instantiates text field objects
+ Atext field is a single-line box into which a user may type text from the keyboard
* Located in the javax.swing package:
import javax.swing.JTextField;

The JTextField Class (Page 2)
* Format to declare a JTextField object:

JTextField jTextFieldObject = new JTextField([stringObject,] [columns]);

— stringObject is default string displayed (optional)

— columns is width in average character size of current font (optional—default is 1)
+ Examples:

JTextField textField1 = new JTextField(10);

JTextField textField2 = new JTextField("Enter number", 16);

The add Method

* Method of class JFrame (inherited from class Container — Window — Frame <
JFrame) that attaches a GUI component object to the window

* Format:
[[FrameObject.]add(jGUIObject);

« Example:
add(new JTextField(10));

The setSize Method
* Method of class JFrame (inherited from class Window <« Frame « JFrame) that
determines the width and height of the window in pixels
* Format:
[[FrameQObject.]setSize(widthint, heightint);
* Examples:
setSize(200, 75);
frame.setSize(200, 75);

The setResizable Method (Page 1)

* Method of class JFrame (inherited from class Frame « JFrame) that determines if the
frame window may be resized
— By dragging the mouse on one of its borders

* Sets boolean value—default is true

The setResizable Method (Page 2)

* Format:
[[FrameObject.]setResizable(true/false);

* Example:
setResizable(false);
frame.setResizable(false);

Page 2

CST141—GUI Basics Page 3

13 The setLocationRelativeTo Method
* Method of class JFrame (inherited from class Window < Frame < JFrame)
+ With single argument null places the window at the center of the screen
* Format:
[[FrameObject.]setLocationRelativeTo(null);

+ Examples:
setLocationRelativeTo(null);
frame.setLocationRelativeTo(null);

14 The setDefaultCloseOperation Method
* Method that determines what happens when an object window instantiated from the
class that extends JFrame is closed
* Example:
myApp.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
— The constant EXIT_ON_CLOSE from class JFrame causes application to end when
the window closes

15 The setAlwaysOnTop Method
* Method of class JFrame (inherited from class Window — Frame < JFrame) that sets
whether this window is always above other windows
* Sets a boolean value—default is false
* Format:
[[FrameObject.]setAlwaysOnTop(true/false);
* Examples:

setAlwaysOnTop(false);
frame.setAlwaysOnTop(true);

16 The setVisible Method (Page 1)

» Method of class JFrame (inherited from class Window < Frame < JFrame) that
determines if the window is displayed (or not displayed)
» Sets a boolean value—default is false

17 The setVisible Method (Page 2)
* Format:
setVisible(true/false);
—Argument is set to true if the JFrame object is to be displayed; false if not
« Examples:
setVisible(true);
super.setVisible(true);

18 Try It Out
* BasicGUls.java—textFieldDemo()

CST141—GUI Basics

19

20

21

22

23

24

The JButton Class (Page 1)

+ Subclass of the Button class, it instantiates command button objects

« If event listening has been activated for the component, generates an ActionEvent
when the user clicks the button

+ Text on the button is called a button label

* Located in the javax.swing package:
import javax.swing.JButton;

The JButton Class (Page 2)

+ Format to declare a JButton object:
JButton jButtonObject = new JButton([stringObject], iconObject]]);
— stringObject—appears as caption on the button

* Example:
JButton button = new JButton("Click here");

Try It Out
* BasicGUIs.java—buttonDemo()

The JLabel Class (Page 1)
* A GUI component class that is used to create text objects displayed in a JFrame
window which are not editable
+ Often used nearby another GUI component in the window to indicate its purpose
* Located in the javax.swing package:
import javax.swing.JLabel;

The JLabel Class (Page 2)
* Format to declare a JLabel object:
JLabel jLabelObject = new JLabel(textString [, iconObject, iconHorizontalPosition]);
— textSting is the text displayed for the label
— iconObject is an optional image displayed with the text

— iconHorizontalPosition is an int constant indicating where the icon appears relative

to text
— Overloaded so that any (and/or all) arguments to the constructor are optional

The JLabel Class (Page 3)

+ Format to declare a JLabel object:
JLabel jLabelObject = new JLabel(textString [, iconObject, iconHorizontalPosition]);

« Examples:
JLabel label1 =
new JLabel("My first label");
JLabel label2 = new JLabel();
JLabel label3 =
new JLabel("JLabel w/text & icon",
new Imagelcon("home.gif"),

Page 4

CST141—GUI Basics

25

26

27

28

29

30

31

SwingConstants.LEFT);

Try It Out
* BasicGUls.java—labelDemo()

The SwingConstants Interface (Page 1)

+ An interface (not a class) that defines common int constants for use with swing
components

+ Remember an interface may contain only:

— abstract methods are instantiated, but must be developed in classes that implement
the interface

— Declarations of constants
* Located in the javax.swing package:
import javax.swing.SwingConstants;

The SwingConstants Interface (Page 2)
» Format to reference SwingConstants interface:

swingObject.swingMethod(SwingConstants. CONSTANT_IDENTIFIER);

— Sample constants are SwingConstants.LEFT, SwingConstants.CENTER,
SwingConstants.BOTTOM, etc

* Example:
label1.setHorizontalTextPosition(SwingConstants.CENTER);

The FlowLayout Class (Page 1)

+ Layout managers control how components are added into JFrame objects

* There are several layout classes of which the most basic (simplest) is the FlowLayout
class

* GUI components are added to a Container object left to right, top to bottom as they
fit

* Located in the java.awt package:
import java.awt.FlowLayout;

The FlowLayout Class (Page 2)
+ Format to instantiate a FlowLayout object:

FlowLayout flowLayoutObject = new FlowLayout();
* Example:

FlowLayout f1 = new FlowLayout();

The setLayout Method (Page 1)

* Method of a JFrame object that defines a layout manager for the frame ...
— Layout managers determine the position and size of GUl components
+ Layout normally is set before GUI components are added to a JFrame

The setLayout Method (Page 2)
¢ Format:

Page 5

CST141—GUI Basics Page 6

32

33

34

35

36

setLayout(layoutObject);

— The layoutObject may be from any layout manager class, not just FlowLayout
* Examples:

FlowLayout f1 = new FlowLayout();

setLayout(f1);

setLayout(new FlowLayout());

The setTitle Method
+ Method of a JFrame object that sets a string that is displayed in the window's title bar
* Format:
[[FrameObject.]setTitle(string);
— string will be displayed in the frame's title bar
* Example:
setTitle("FlowLayout Demo");

Try It Out
* FlowLayoutDemo.java

The GridLayout Class (Page 1)

+ A GridLayout object places components in a grid of rows and columns

+ Each component takes all available space within its cell, and each cell is exactly the
same size ...
—If a window with a GridLayout is resized, the cell size of all objects changes so that

the cells are as large as possible, given the space available to the container

* Located in the java.awt package

import java.awt.GridLayout;

The GridLayout Class (Page 2)
+ Constructor format:
GridLayout flowLayoutObject = new GridLayout(rows, columns [, horizontalGap,
verticalGap]));
— The rows and columns parameters are the number of rows and columns in the
layout
— The optional horizontalGap is the space between columns and verticalGap is the
space between rows
* Example:
setLayout(new GridLayout(5, 2, 5, 5));

The add Method for GridLayout Managers

* Objects are added to the JFrame with a GridLayout left-to-right, top-to-bottom, as
they are inserted

* Format:
add(jGUIObject);

CST141—GUI Basics Page 7

* Example:
add(new JTextField());

37 TryltOut
* GridLayoutDemo.java

38 The BorderLayout Class (Page 1)

+ A BorderLayout has five areas specified by the five BorderLayout constants:
— NORTH
— WEST
— CENTER
— EAST
- SOUTH

* Located in the java.awt package
import java.awt.BorderLayout;

39 The BorderLayout Class (Page 2)
+ If the window is enlarged, the CENTER area gets as much of the available space as
possible
—The other areas expand only as much as necessary to fill all available space

+ Sometimes a JFrame will not use all of the areas of the BorderLayout object—perhaps
just the top, left and right

40 The BorderLayout Class (Page 3)
« Constructor format:
BorderLayout flowLayoutObject = new BorderLayout([horizonatalGap, verticalGap 1));

— The optional horizontalGap and verticalGap is the horizontal and vertical space
between the components

* Example:
setLayout(new BorderLayout(5, 5));

41 The add Method for BorderLayout Managers

* To add objects to a BorderLayout container, the area to place the object must be
specified

* Format:
add(jGUIObject, BorderLayout.LOCATION CONSTANT);
— The valid BorderLayout.LOCATION_CONSTANTS are NORTH, WEST, CENTER, EAST

and SOUTH

* Example:

add(new JButton("Male", BorderLayout. WEST);

42 Try It Out

+ BorderLayoutDemo.java

43 The Panel Class (Page 1)

CST141—GUI Basics Page 8

+ Panel is the simplest GUI container class

* It can provide space for an application to attach any other component, including
other panels and/or frames

* Located in the java.awt package
import java.awt.Panel;

44 The Panel Class (Page 2)
+ For example one possible function of Panel could be to nest one layout container
inside another ...
- E.g. a GridLayout container object could be placed inside a Panel
— Then the Panel object could be placed inside a frame with BorderLayout manager

45 The Panel Class (Page 3)
» Constructor to format a JPanel with a layout manager parameter:
JPanel jPanelObject = new JPanel(new LayoutManagerClass());
* Example:
JPanel inputPanel = new JPanel(new GridLayout(2, 4));

46 The add Method for Panels

» To add a sub-layout to a JFrame, add individual components to the Panel object (not
the JFrame):
inputPanel.add(new JTextField());

* Once all components are added to the Panel, add the Panel to the JFrame (within its
layout manager):
add(inputPanel, BorderLayout.NORTH);
— This example assumes that the JFrame is using a BorderLayout layout manager

47 Try It Out
* JPanelDemo.java

48 Mini-Quiz No. 1
+ Start a new project "guis-miniquiz-1" and create a new class "MiniQuiz1” with a
JFrame as per the image below:
— The layout manager for the JFrame is BorderLayout
— JTextFields are placed in the NORTH and SOUTH areas

—A 2 row by 1 column (2 x 1) GridLayout with gaps (5, 5) is placed inside a Panel in
the WEST area with two JLabels

— A JButton is placed in the EAST area
— JFrame window properties include title “Temp Converter” and size (300, 120)

49 MiniQuiz1.java (Page 1)
50 MiniQuiz1.java (Page 2)
51 MiniQuiz1.java (Page 3)

52 The Imagelcon Class (Page 1)

CST141—GUI Basics Page 9

53

54

55

56

57

58

+ Creates an Imagelcon object that references a graphics file of format GIF or JPEG or
PNG

— Filename extensions are.gif or .jpg or .png
+ Imagelcon extends from class Icon

—The call to the Imagelcon constructor returns an lcon object reference
* Located in the javax.swing package:

import javax.swing.Imagelcon;

The Imagelcon Class (Page 2)
» Format to declare a Imagelcon object:
Imagelcon iconObject = new Imagelcon("path/filename");
— path/location is the Windows (and/or DOS) filename and disk location of a ".gif" or
"jpg” or ".png” file
The Imagelcon Class (Page 3)

* Format:
Imagelcon iconObject = new Imagelcon("path/filename");
+ Examples:

Imagelcon image = new Imagelcon(*home.gif");
JLabel label = new JLabel(image);

JLabel label = new JLabel(new Imagelcon("home.gif"));

Try It Out
* ImagelconDemo. java

The Color Class (Page 1)

 Creates an Color object that use the RGB model (values between zero (0) to 255 that
represent the amount of red, green and blue in makeup of color)

* Located in the java.awt package:
import java.awt.Color;

The Color Class (Page 2)
* Format to declare a Color object:
Color colorObject = new Color(redint, greenint, bluelnt);
« Examples:
Color color = new Color(50, 150, 250);
button.setBackground(color);

button.setBackground(new Color(50, 150, 250));

The Color Constants

+ A series of 13 standard static constants of class Color that return an int representing
an RGB color

* The constants are BLACK, BLUE, CYAN, DARK_GRAY, GRAY, GREEN, LIGHT_GRAY,

CST141—GUI Basics Page 10

59

60

61

62

63

64

65

MAGENTA, ORANGE, PINK, RED, WHITE and YELLOW
+ Example:
button.setBackground(Color.BLUE);

The setBackground Method
+ Sets background color (the color behind) of “swing” GUI components
* Format:
JjComponentObject.setBackground(colorObject);
— The colorObject may be instantiated from class Color or a Color constant
+ Examples:
button.setBackground(Color.BLUE);

The setForeground Method
* Sets foreground color (the font color) of “swing” GUI components
* Format:
JjComponentObject.setForeground(colorObject);
— The colorObject may be instantiated from class Color or a Color constant
* Examples:
button.setBackground(Color.BLUE);

The Font Class (Page 1)

+ Creates an Font object that ...

* Located in the java.awt package:
import java.awt.Color;

The Font Class (Page 2)
* Format to declare a Color object:
Font fontObject = new Font(typeFaceString, boldltalicint, sizelnt);
— typeFaceString is the name of a font installed on the user's computer
— boldltalicint is an int the of sum Font.BOLD (1) and Font.ITALIC (2) constants that
specifies the bold and/or italic style of the font using
—sizelnt is the font size measured in “points”

The Font Class (Page 3)

« Example 1:
Font font = new Color(new Font("Comic Sans MS", Font.BOLD + Font.ITALIC, 24));
button.setFont(font);

+ Example 2:
button.setFont(new Font("Comic Sans MS", Font.BOLD + Font.ITALIC, 24));

Try It Out
* ColorFontDemo.java

The JCheckBox Class (Page 1)
* Subclass of the JToggleButton class, instantiates check box objects which have on/off

CST141—GUI Basics Page 11

(true/false) values
* Click once turns it on; next click turns it off
* Located in the javax.swing package:

import javax.swing.JCheckBox;

66 The JCheckBox Class (Page 2)
* Format to declare a JCheckBox object:
JCheckBox jCheckBoxObject = new JCheckBox ([stringObject, [true/false]]);
—stringObject is the default string displayed to the right of the check box (its caption)
— boolean argument sets button initially on or off
* Example:
JCheckBox bold = new JCheckBox("Bold");

67 The JRadioButton Class (Page 1)
* Subclass of JToggleButton class, instantiates radio (option) button objects which have
on/off (true/false) values

* If item listening has been activated for the component, generates an ItemEvent when
the user clicks the button

* Located in the javax.swing package:
import javax.swing.RadioButton;

68 The JRadioButton Class (Page 2)
» Radio buttons are usually grouped
— Only one button in the group may be selected at any moment

— Clicking one radio button in the group turns off any other in the group that is
currently on

69 The JRadioButton Class (Page 3)
» Format to declare a JRadioButton object:
JRadioButton jRadioButtonObject = new JRadioButton([stringObject], [true/false]]);
—stringObject is the default string displayed to the right of the button
— boolean argument sets button initially on or off
* Example:
JRadioButton size8 = new JRadioButton("8", false);

70 The ButtonGroup Class (Page 1)
+ Creates a functional relationship between radio buttons
— Not a visual GUl component

* The add method of objects instantiated from the ButtonGroup object places radio
buttons into the group

* Located in the javax.swing package:
import javax.swing.ButtonGroup;
71 The ButtonGroup Class (Page 2)
+ Format to declare a ButtonGroup object:

CST141—GUI Basics

72

73

74

75

76

ButtonGroup jButtonGroupObject = new ButtonGroup();
+ Example:

ButtonGroup fontGroup = new ButtonGroup();

The add Method for ButtonGroup
* For the ButtonGroup object, adds a radio button to the “logical” group
+ Before the add method inserts JRadioButton into group, it behaves like a JCheckBox
* Format:
JjButtonGroupObject.add(jRadioButtonObject);
+ Example:
fontGroup.add(size8);

The JComboBox Class (Page 1)
* Subclass of JComponent class, instantiates combo box (drop-down list) objects from
which users may select an item

* If item listening has been activated for any component, generates an IltemEvent when
the user selects from the list

* Located in the javax.swing package:
import javax.swing.JComboBox;

The JComboBox Class (Page 2)

* Format to declare a JComboBox object:
JComboBox jComboBoxObject = new JComboBox([stringArray]);
—The stringArray provides the items for the list

—The argument is optional (however items must then be added later using the add
method)

* Example:
JComboBox fonts = new JComboBox(fontNames);

The setMaximumRowCount Method

+ For a JComboBox object, sets maximum number of rows displayed when the list drops
down

+ Automatically displays a scroll bar if the number of items exceeds maximum rows

* Format:
JjComboBoxObject.setMaximumRowCount(numericint);

* Example:

fonts.setMaximumRowCount(3);

The setText Method (Page 1)

* Method of JLabel and other GUI component objects that defines the text for the
object

 Alternate method is to assign the text as an argument in the call to the constructor
method of the object, e.g.
JLabel label = new JLabel("My label");

Page 12

CST141—GUI Basics

77

78

79

80

81

82

The setText Method (Page 2)
* Format:
guiObject.setText(stringObject);
* Example:
label.setText("My Label");

The setToolTipText Method

* Method of JLabel and other GUI component objects that defines tool tip text for the
object

* Tool tip is the text displayed when the mouse pointer hovers over the object

* Format:
guiObject.setToolTipText(stringObject);

* Example:
label.setToolTipText("Text only");

The setHorizontalTextPosition Method
* Method of JLabel and other GUI component objects that define where an icon
appears horizontally relative to the object text
* Uses constants of the SwingConstants interface
* Format:
JGuiObject setHorizontalTextPosition(SwingConstants.POSITION_CONSTANT);
* Examples:

label.setHorizontalTextPosition(SwingConstants.CENTER);

The setVerticalTextPosition Method
* Method of JLabel and other GUI component objects that define where an icon
appears vertically relative to text
* Uses constants of the SwingConstants interface
* Format:
JjGuiObject setVerticalTextPosition(SwingConstants.POSITION_CONSTANT);
* Examples:
label.setVertical TextPosition(
SwingConstants.BOTTOM);

Try It Out

* OptionsDemo.java

Event Handling
+ GUI components generate events when users interact with controls
* Typical events include:
— Clicking the mouse
—Moving the mouse
—Typing in a text box (JTextField)
* When an event occurs, information about it is stored in an object of a class that

Page 13

CST141—GUI Basics Page 14

extends from class AWTEvent

83 Event Listeners
» To process an event, the programmer must:
— Register (declare) an event listener
—Implement one or more event handler methods

* When an event occurs, GUI component notifies the listener by calling the event's
handling method(s)

84 The ActionListener Interface (Page 1)
+ A class file that implements an interface must include all methods “defined” in the
interface
—May be a member of the Java API or written/developed by an application
programmer
+ ActionListener is an interface used to manage event listening and event handling for
JButton'’s (and some other GUI components)

* Objects instantiated from a class that implements the ActionListener interface “are”
event handlers, e.g. "Is an ActionListener"

85 The ActionListener Interface (Page 2)
* The method actionPerformed is declared inside the ActionListener interface that must
be defined in any class that implements it
—E.g. if a user clicks a JButton object, (and event listening is activated) the
actionPerformed event handler method is called automatically
* Imported from java.awt.event package:
import java.awt.event.ActionListener;

86 The ActionListener Interface (Page 3)

* Format:
private class EventHandlerClassName implements ActionListener
{..
—implements instead of extends

* Example:
private class ButtonEventHandler implements ActionListener
{..

87 The ActionEvent Class (Page 1)

+ Class that represents the variable type of parameter e in the header of the
actionPerformed() method

* The variable e is a reference that stores the event information about the specific GUI
component that triggered the event

+ Imported from java.awt.event package:
import java.awt.event.ActionEvent;

88 The ActionEvent Class (Page 2)

CST141—GUI Basics

89

90

91

92

93

94

* Example:
private class ButtonEventHandler implements ActionListener
{
public void actionPerformed(
ActionEvent e)

(..

Instantiating an ActionListener Object
+ An ActionListener class must have been defined previously
* Format:
ActionListenerClass actionListenerObject = new ActionListenerClass();
* Example:
ButtonEventHandler h1 = new ButtonEventHandler();

The addActionListener Method (Page 1)

+ A method of a JButton (and other “action listener” GUI components) that assign an
ActionListener object to the component

» The ActionListener object is the argument to the method

+ This method effectively activates event listening

» Must be executed for every GUI component that will be an event listener

The addActionListener Method (Page 2)
* Format:
JjGuiComponentObject.addActionListener(actionListenerObject);

* Example:
ok.addActionListener(h1);
—The GUI component 'ok’ is a JButton

Try It Out
» EventHandlerDemo_1 java

The setEditable Method
+ Sets a boolean value that determines if JTextField object may be edited by a user
* Frequently is set to false if the object will be used for output only
* Format:
JTextFieldObject.setEditable(true/false)
* Example:
resultField.setEditable(false);

The getText Method

* Returns the String value currently stored in a JTextField (or another GUI component
that has a text property) object

+ The text property of the component is the value currently displayed in the text box

* Format:

Page 15

CST141—GUI Basics Page 16

JGuiObject.getText()
+ Example:
String sFirst = firstNumber.getText();

95 The setText Method
+ Sets the contents of a JTextField object (or some other GUI component that has a text
property) to a new value
* Format:
JjGuiObject setText(string)
* Example:
resultField.setText(resultString);

96 Try It Out
+ EventHandlerDemo_2.java

97 The selectAll Method

» A method of class JTextField (inherited from class JTextComponent « JTextField) that
selects all the text in the object
— As if it had been selected with a mouse

* Format:
JjComponentObject.selectAll();

* Example:
inputAge.selectAll();

98 Mini-Quiz No. 2 (Page 1)
* Open the class file “BorderLayoutDemo” and modify it as follows:
— Declare JTextField objects inputAge and resultField as private instance variables

— Instantiate JButton objects male, female and notTelling and add the objects “by
name” to the JFrame (still add them to the same BorderLayout areas as before)

— Call selectAll() method for the inputAge JTextField
99 BorderLayoutDemo.java (guis-miniquiz-2—Page 1)
100 BorderLayoutDemo.java (guis-miniquiz-2—Page 2)
101 BorderLayoutDemo.java (guis-miniquiz-2—Page 3)

102 Mini-Quiz No. 2 (Page 2)
« Create an event handler class “MaleEventHandler” as follows:

— Declare variable age as type int and retrieve (and convert) the value from the
inputAge JTextField
— Calculate the ideal age of the female spouse as:
(age/2 +7)
— Display the ideal age to the resultField JTextField in the format:
Ideal age of spouse is 20
* (Assuming 20 is the calculated value)

CST141—GUI Basics Page 17

103

104

105

106

107

108

109

110

111

112

— Add "action listening” to the “male” JButton
BorderLayoutDemo.java (guis-miniquiz-2—Page 4)
BorderLayoutDemo.java (guis-miniquiz-2—Page 2)

Mini-Quiz No. 2 (Page 3)
+ Create an event handler class “FemaleEventHandler” as follows:
— Declare variable age as type int and retrieve (and convert) the value from the
inputAge JTextField
— Calculate the ideal age of the male spouse as:
(age * 2 -14)
— Display the ideal age to the resultField JTextField in the format:
Ideal age of spouse is 26
* (Assuming 26 is the calculated value)
—Add “action listening” to the “female” JButton

BorderLayoutDemo.java (guis-miniquiz-2—Page 5)
BorderLayoutDemo.java (guis-miniquiz-2—Page 2)

Mini-Quiz No. 2 (Page 4)
 Create an event handler class "NotTellingEventHandler” as follows:
— Display the message to the resultField JTextField:
No comment!!!
—Add "action listening” to the “female” JButton

BorderLayoutDemo.java (guis-miniquiz-2—Page 6)
BorderLayoutDemo.java (guis-miniquiz-2—Page 2)

The Ternary Operator (Page 1)

* The ternary operator (?) returns one of two values depending upon the value of a
booleanExpression

* It can be used as an alternative to Java if/else syntax, but it actually goes beyond that
— It can even be used on the right hand side of Java assignment statements

* Format:
booleanExpession ? valuelfTrue : valuelffalse

The Ternary Operator (Page 2)
* Example:

boldint = (t1.getFont().isBold() ? Font.BOLD : Font.PLAIN);
+ Equivalent:

if (t1.getFont().isBold())

{
boldInt = Font.BOLD;

CST141—GUI Basics

else

{

boldint = Font.PLAIN;

}
113

Page 18

