JavaScript—Handling Events Page 1

1 Handling Events
JavaScript

2 JavaScript Events (Page 1)
« An HTML event is “something interesting” that happens to an HTML element
« Can include:
= Web document completes its loading
= The user moves the mouse over a hyperlink or some other object
= The user clicks the mouse on a button or other object
= The user strikes a key on the keyboard
« All GUI (graphical user interface) applications behave this way

3 JavaScript Events (Page 2)
« A common way of dealing with these events is to use an event attribute of the HTML
object and assign the function name as its value
» Format:
<htmlElement eventType="functionName()">
» Example:
<button onclick="getTime()">

4 The document Object
* Represents the Web page displayed in a browser
« Contains all Web page elements

5 The getElementByld() Method

» A method of the document object that returns the first element in a Web document
with a matching ID attribute value

« Format:
document.getElementByld("indentifier")
= The indentifier is the value of the ID attribute of an HTML element

» Example:
document.getElementByld("time").innerHTML = time.toLocaleTimeString();

6 The innerHTML property

* The innerHTML property sets or returns the HTML content (inner HTML) of an
element
= The content between an opening and closing tag such as <p> or one of the

heading tags

» Format:
htmlElement.innerHTML

» Example:
document.getElementByld(“time").innerHTML = time.toLocaleTimeString();



JavaScript—Handling Events Page 2

7 The <button> Tag (Page 1)
» The <button> tag defines a clickable button

« Inside a <button> element can put content like text or images which appear on the
button

= This is the primary difference between this element and buttons created with the
<input> element

8 The <button> Tag (Page 2)
e Format:
<button type="button"> Text or image on the button</button>
» Example:
<button type="button">Click me</button>

= Tip: Always specify the type attribute for a <button> (different browsers have
different default types for the <button> element)

9 The onclick Event
« The event that occurs when an element is clicked
« Often used with a button but can be applied to most HTML elements
« Format:
<htmlElement onclick="functionName()" >
» Example:
<button onclick="getTime()">

10 Try It Out

« events1.htm

11 Assigning Code to Event Attributes

« Alternately one or more JavaScript statements can be assigned as the event attribute
value

» Format:
<htmlElement eventType="javaScript statement" >

» Example:
<button onclick="getElementByld('time").innerHTML = Date()">
= Single 'quotes' and double "quotes” can be used interchangeably in JavaScript

12 Try It Out

« eventsla.htm

13 Anonymous Functions (Page 1)
« Functions may be assigned to event properties of an object in a JavaScript statement
= Must follow the declaration of the object (HMTL element), so it needs to be in the
<body> section inside a <script> block
« The function is considered anonymous since there is no name follow the keyword
"function()”



JavaScript—Handling Events Page 3

14

15

16

17

18

19

20

21

Anonymous Functions (Page 2)
» Format:
object.eventType = function() { functionCode };

= The functionCode is inside a set of {braces} and can be either the body of an actual
function or a function call to the name of a separately defined function

Anonymous Functions (Page 3)
» Example:
document.getElementByld(“timeButton").onclick = function() { getTime() };

= The getTime() function may be defined in a <script> block either in this or another
<script> block

Try It Out
» events1b.htm

The addEventListener() Method (Page 1)

» The method to attaches (“registers”) an event handler function to a specified
element

» Not supported in Internet Explorer 8 and earlier versions, and Opera 6.0 and earlier
versions

» An event object is passed to the function as the first parameter

The addEventListener() Method (Page 2)
» Format:
object.addEventListener(eventType, functionName);
» Example:
timeButton.addEventListener("click”, getTime);
= The "on" prefix of the event is eliminated, e.g. just “click”
= The parentheses following the function name are eliminated, e.g. just "getTime”

Try It Out

« events1c.htm

The addEventListener() Method (Page 3)
» The second argument as a complete function:
timeButton.addEventListener(“click”,
function getTime()

{
var time = new Date();
document.getElementByld("time").innerHTML = time.toLocaleTimeString();

)
Try It Out



JavaScript—Handling Events Page 4

» events1d.htm

22 The attachEvent() Method (Page 1)
» The method to attaches (“registers”) an event handler function to a specified
element
« Used for Internet Explorer 8 and earlier versions, and Opera 6.0 and earlier versions

23 The attachEvent() Method (Page 2)
e Format:
object.attachEvent(eventType, functionName);
» Example:
timeButton.attachEvent("click”, getTime);
= The “on” prefix of the event is eliminated, e.g. just “click”
= The parentheses following the function name are eliminated, e.g. just “getTime”

24 Try It Out
» eventsle.htm

25 The <input> Tag as a Text Field
« The <input> tag with attribute type="text" creates a text field (textbox) into which
the user can type text
» Format:
<input type="text">
» Example:
<input type="text" id="fahrenheit">

26 The value Property
« The value property sets or returns the value of an element or option (the value sent
to the server when the form is submitted)
= For a text field the value property is the text currently contained within the textbox
» Format:
object.value;
» Example:
var fahrenheit = document.getElementByld(“fahrenheit").value;

27 Try It Out
« events2.htm

28 DOM Events
» The HTML DOM events allow JavaScript to “register” event handlers on elements in
an HTML document

« Events normally are associated with functions so that the function does not execute
until the event occurs, e.g. when a user clicks a button

« Tip: The event model was standardized by the W3C in DOM Level 2



JavaScript—Handling Events Page 5

29 Form Events (Page 1)
« Events triggered by actions inside an HTML form (applies to almost all HTML
elements, but is most used in <form> elements):
= onblur—occurs when an element loses the focus

= onchange—occurs when the content of a form element, the selection, or the
checked state have changed

« For <input>, <keygen>, <select>, and <textarea>
= onfocus—occurs when an element gets the focus

30 Form Events (Page 2)
« Events triggered by actions inside an HTML form (con.):
= onfocusin—occurs when an element is just about to get the focus
= onfocusout—occurs when an element is just about to lose the focus
= oninput—occurs when an element gets user input
= oninvalid—occurs when an element is invalid
= onreset—occurs when a form is reset

31 Form Events (Page 3)

« Events triggered by actions inside an HTML form (con.):
= onsearch—occurs when the user writes something in a search field
« For <input="search”>
= onselect—occurs after the user selects some text
* For <input> and <textarea>
= onsubmit—occurs when a form is submitted

32 Creating a Selection List (Page 1)

» The <select> block creates a scrollable menu (drop-down list or list box) used to
select from a list of choices

« The list is inserted into the menu within a series of option blocks

33 Creating a Selection List (Page 2)
» Format:
<select id="identifier" attributes>
<option value="valuel">text1</option>
<option value="value2">text2</option>

</select>

+ The value attribute value of the option selected is the value for the <select> and
is assigned to the name (variable) property when the form is submitted
+ The text are values displayed in the selection list
34 Creating a Selection List (Page 3)
* Example:



JavaScript—Handling Events

<select id="carSelect">
<option value="Ford" >Ford </option>
<option value="Honda">Honda</option>
<option value="Toyota" >Toyota</option>
<option value="Chevy">Chevy</option>
<option value="Mercedes">Mercedes</option>
</select>

35 Try It Out
» events3.htm

36 The style Object
« Returns the collection of CSS “style” properties for an HTML element
« Each style property may be set or retrieved
e Format:
object.style.cssProperty
» Example:
document.getElementByld("inputBox").style.backgroundColor = "red";

37 Try It Out
» events4.htm

38 Window Events (Page 1)
« Represent events related to browser itself:
= onload—occurs when a document and all its resources are fully loaded and

displayed (the most important of all window events)

+ Often used inside the <body> to execute a script once all content is completely
loaded

« Can be used to check visitor's browser type (loads proper version of Web page
accordingly)

+ Also can be used to deal with cookies

39 Window Events (Page 2)
« Represent events related to browser itself (con.):
= onunload—occurs when user navigates away from current Web document

= onbeforeunload—similar to unload but provides the user an opportunity to cancel
closing browser window or navigation to another page (more on this to follow)

40 Window Events (Page 3)
« Represent events related to browser itself (con.):
= onreadstatechange—similar to load but before external resources are fully loaded
= onresize—occurs when user resizes browser window
= onscroll—occurs when user scrolls up or down in the browser window'’s scroll
channel

Page 6



JavaScript—Handling Events Page 7

= Additionally onfocus and onblur from the form events occur when the browser
window receives or loses keyboard focus from the operating system

41 The onbeforeunload Event (Page 1)

 The event occurs when the Web page is about to be unloaded and can cancel
unloading

« Unlike the unload event, it displays a dialog window that gives the user an
opportunity to cancel any one of the following:
= Close the browser window
= Reload the browser window
= Navigation to another Web page

42 The onbeforeunload Event (Page 2)
« The standard message in the dialog window is something like:
= "Are you sure you want to leave this page?”
= This message cannot be removed
= An additional custom message can be added by the programmer as well

43 The onbeforeunload Event (Page 3)
» Format:
object.onbeforeunload=function() { return functionCode };

= The keyword return allows the function to return a value which in this case is
Boolean (if false the Web document will not unload)

» Example:
document.getElementByld(“webDocument").onbeforeunload = function() { return
unloadFunction() };

44 The onbeforeunload Event (Page 4)
« The event handler function requires a string return value that is part of the prompt
= Specifically the custom message that is displayed in the dialog window along with
the standard message
» Example:
function unloadFunction()
{

return "Click one of the buttons below";

}

45 The navigator Object (Page 1)

» The window.navigator object includes both methods and properties with
information about a visitor’s browser

« May be written without the window prefix, e.g.:
= navigatorappName

46 The navigator Object (Page 2)



JavaScript—Handling Events

« Some navigator object members
= navigatorappName—property that represents the “app name” of the browser
+ IE11, Chrome, Firefox, and Safari return appName “Netscape”
= navigatorappCodeName—property that represents the “app code name” of the
browser

+ Chrome, Firefox, IE, Safari, and Opera return appCodeName “Mazilla”

47 The navigator Object (Page 3)
« Some navigator object members (con.):
= navigator.product—property that represents the engine name of the browser

= navigatorappVersion—property that represents version information about the
browser

= navigator.userAgent—property that represents additional version information
about the browser

48 The navigator Object (Page 4)
« Some navigator object members (con.):

= navigator.platform—property that represents operating system (platform) of the
browser

= navigatorlanguage—property that represents the browser’ language

49 The navigator Object (Page 5)
» Some navigator object members (con.):

= navigator.cookieEnabled—property that represents a Boolean value (true or false)
indicating if cookies are enabled for the browser

= navigatorjavaEnabled()—method that returns a Boolean value (true or false)
indicating if Java is enabled for the browser

50 Try It Out

« events5.htm

51 Mouse Events (Page 1)
« Events triggered by a mouse action:
= onclick—occurs when the user clicks on an element

= oncontextmenu—occurs when the user right-clicks on an element to open a
context menu

= ondblclick—occurs when the user double-clicks on an element
= onmousedown—occurs when the user presses a mouse button over an element

52 Mouse Events (Page 2)
« Events triggered by a mouse action (con.):
= onmouseenter—occurs when the pointer is moved onto an element
= onmouseleave—occurs when the pointer is moved out of an element
= onmousemove—occurs when the pointer is moving while it is over an element

Page 8



JavaScript—Handling Events Page 9

= onmouseover—occurs when the pointer is moved onto an element, or onto one of
its children

53 Mouse Events (Page 3)

« Events triggered by a mouse action (con.):
= onmouseout—occurs when a user moves the mouse pointer out of an element, or
out of one of its children
= onmouseup—occurs when a user releases a mouse button over an element

54 Try It Out
« events6.htm

55 Key Events
« Events triggered by pressing and releasing keys on the keyboard
= onkeydown—occurs when the user is pressing a key (key is down)
= onkeypress—occurs when the user presses a key (a complete press and release)
= onkeyup—occurs when the user releases a key

56 The event Object (Page 1)
« Every event call has a built-in event object as which can be passed as its first
parameter
» Format:

object.event = function() { functionName(event) }
= The event argument is a programmer-defined name
» Example:
document.getElementByld(“numberlnput").onkeypress = function() {
numbersOnly(event) }

57 The event Object (Page 2)

« To use the event object, define it as a parameter in the called function header
= As before the event parameter is a programmer-defined name

* Format:
function functionName(event)
{..

» Example:
function numbersOnly(event)

(..

58 The event Object (Page 3)
« The properties for an event object are contingent on which is the event that has
occurred

» Some objects for the onkeypress event are:
= event.ctrlIKey—returns a boolean value indicating if the <Control> key was down
when the event occurred



JavaScript—Handling Events

= event.charCode—returns a number which is the Unicode value of the key that was
pressed

= event.keyCode—returns a number which identifies the "unmodified” value of the
key that was pressed

= event.repeat—returns a boolean value indicating if the key is being held down and
automatically repeating

59 The event Object (Page 4)
« A summary of most event object properties and methods can be found at:

o

60 KeyboardEvent charCode Property

« The charCode property returns the Unicode value (number) of the key that triggered
the onkeypress event

» Format:
event.charCode

» Example:
if (event.charCode == 48) { ...
= E.g. “Is it the digit 1?”

61 KeyboardEvent keyCode Property

« The keyCode property returns a number which identifies the “unmodified” value of
the pressed key that triggered the onkeypress event

» Format:
event.keyCode

» Example:
if (event.keyCode == 48) { ...
= E.g. "Is it the digit 1?”

62 Try It Out
« events7.htm

63 DOM Events (Page 1)
» The DOM Level 3 Events specification adds new elements and modifies other
functionality:
= Deprecates a number of event types that were defined by Level 2 but never widely
implemented (e.g. DOMActivate, DOMFocusin, and DOMNodelnserted,)

= Standardizes the focusin and focusout events as bubbling alternatives to the focus
and blur events

= Standardizes mouseenter and mouseleave events as nonbubbling alternatives to
mouseover and mouseout

64 DOM Events (Page 2)

Page 10



JavaScript—Handling Events

» The DOM Level 3 Events specification adds new elements and modifies other
functionality (con.):
= Standardized support for two-dimensional mouse wheels via the wheelevent
= Better support for text input events with a textinput event and with a new
KeyboardEvent object that is passed as the argument to handlers for keydown,
keyup, and keypress events (deprecated keypress in favor of textinput)

65 DOM Events (Page 3)
« The DOM Level 3 Events specification adds new elements and modifies other
functionality (con.):
= Simplifies keydown, keyup, and keypress events by adding new key and char
properties to event object
* Both of these properties are strings.
* For key events that generate printable characters, key and char will be equal to
the generated text
« For control keys, the key property will be a string like “Enter”, “Delete” or “Left”
that identifies the key

66 HTML5 Events (Page 1)
« Inclusion of <audio> and <video> elements for playing sound and video with long
list of events:
= canplay,loadeddata, playing, stalled, canplaythrough, loadedmetadata, progress,
suspend, durationchange, loadstart, ratechange, timeupdate, emptied, pause,
seeked, volumechange, ended, play, seeking, waiting

67 HTMLS5 Events (Page 2)
« Drag-and-drop API allows JavaScript apps to participate in OS-based drag-and-drop
operations:

= dragstart, drag, dragend, dragenter, dragover, dragleave, drop
« Defines a lot of new features for HTML forms including standardizing the form input
event and defining a form validation mechanism

68 HTML5 Events (Page 3)
« Support for offline web applications that can be installed locally in an application
cache

= offline, online, cached, checking, downloading, error, noupdate, obsolete, progress,
updateready, message

69

70 Touchscreen and Mobile Events

« (For some other time)

Page 11



